scholarly journals Real time monitoring of crop growth using soil moisture sensor

IJARCCE ◽  
2015 ◽  
Vol 4 (4) ◽  
pp. 535-538
Author(s):  
Prof. Ajay V. Raipure ◽  
Dr. Deshmukh S . M. ◽  
Dr. Ashwinikumar P. Dhande
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Emilyana Varida ◽  
Arif Supriyanto ◽  
Wiwik Kusrini ◽  
Fathurahmani Fathur

Saat ini para petani sayuran dalam menanam jenis sayuran masih menggunakan cara tradisional dan belum memperhatikan kondisi tanah yang sesuai untuk jenis sayuran yang akan mereka tanam, hal ini menyebabkan pertumbuhan sayuran menjadi kurang maksimal. Oleh karena itu diperlukan sebuah sistem yang mampu memberikan informasi kadar tanah dan memberikan rekomendasi jenis sayuran yang cocok untuk ditanami. Sistem yang akan dibangun berbasis mikrokontorler arduino, sensor soil moisture, sensor pH, dan modul ESP8266 yang digunakan untuk mengirimkan data hasil dari pembacaan sensor ke perangkat mobile secara real-time  untuk diproses dan menghasilkan rekomendasi jenis sayuran yang cocok berdasarkan data hasil dari pembacaan sensor. Berdasarkan hasil pengujian, sistem ini telah mampu menampilkan kondisi kelembaban tanah, kadar pH dengan baik dan mampu merekomendasi jenis sayuran sesuai dengan kondisi hasil pembacaan sensor, sehingga harapannya dapat membantu para petani sayuran dalam menentukan jenis sayuran yang akan mereka tanam dan mampu meminimalisir resiko gagal panen. Kata Kunci: Arduino, soil moisture, pH, mobile web


Author(s):  
Samarth Asnani

Abstract: Agriculture in most countries is largely dependent on the environmental conditions and climate. Real-time remote monitoring of field conditions allows for early detection of unfavorable conditions developing in the field that is generally a laborious task taken up by the farmers themselves. Additionally, with the rapid shift in climatic conditions and issues pertaining to global warming, the rainfall dependent agricultural yield is promptly affected. In this paper, we present a wireless system using nRF24L01 RF modules to monitor the farm environment conditions and operate the final control element aimed at implementing drip irrigation. The proposed system is designed to be economical and having a capacity for further expansion, allowing the widespread devices across the farm to be controlled. The soil sogginess level is measured by a self-made soil moisture sensor. A ball valve is actuated based on the levels of soil moisture, temperature and humidity checked against a set of predefined levels. The collected data is then pushed onto a cloud platform for future study or use. Keywords: Wireless sensor network, real-time monitoring, nRF24L01 RF module, highly economical and efficient system


2020 ◽  
Vol 39 (3) ◽  
pp. 911-917
Author(s):  
V. Ogwo ◽  
K.N. Ogbu ◽  
C.C. Anyadike ◽  
O.A. Nwoke ◽  
C.C. Mbajiorgu

The quantity and quality of water present in the soil determine to a greater extent the performance of agricultural crops. Real-time determination of moisture content has a greater advantage over the traditional gravimetric method of determining soil moisture content. Thus, this work was based on the design and construction of a cost effective digital capacitive soil moisture sensor for real-time measurement. The moisture sensors comprised four integrated units namely: power supply unit with a 9V DC battery as a power source, sensor unit with a locally sourced Printed Circuit Board (PCB) as the single sensing probe, control unit made up of PIC16f877 microcontroller programmed with a C language and the C source code compiled in Corporate Computer Services Compiler (CSS C) compiler development environment, and a 16x2 display unit which displays the readings in percentage moisture content (%MC) and capacitance (μF) of the soil obtained from the sensor on its screen. Standard gravimetric moisture content was carried out to get the calibration factor which was used to calibrate the sensor for reliability. The validation was done by taking the reprogrammed (calibrated) sensor to the field for further measurement, after which soil samples were collected for further gravimetric analysis. A regression equation was obtained by plotting the moisture content obtained from gravimetric method (%MCG) against that from sensor reading (%MCS) with a high degree correlation coefficient (R2) of 0.998. The developed capacitive soil moisture sensor is cheap, portable, reliable and easy to use even by local farmers. Keywords: Calibration, Capacitive sensor, Printed circuit board, Soil moisture content, Validation.


2016 ◽  
Vol 8 (4) ◽  
pp. 1959-1965 ◽  
Author(s):  
Jitendra Kumar ◽  
Neelam Patel ◽  
T. B. S. Rajput

Soil moisture sensor is an instrument for quick measurements of soil moisture content in the crop root zone on real time basis. The main objective of this research was development and evaluation of an indigenous sensor for precise irrigation scheduling. The various parts of sensor developed were ceramic cup, acrylic pipe, level sensor, tee, reducer, gland, cork, and end cap. The designed system was successfully tested on okra crop and calibrated with frequency domain reflectometry (FDR) by three methods of irrigation, i.e. check basin, furrow and drip, respectively. The average depth of water depletion in modified tensiometer by these methods was 27 to 35 cm at 50% management allowable depletion (MAD) of field capacity. This depth was useful for the level sensor to be installed inside modified tensiometer for real time irrigation scheduling. The correlation coefficient (R2) between soil moisture content obtained from the developed sensor and FDR was 0.963. Sensor network was integrated with global system for mobile communication (GSM), short message service (SMS) and drip head work to develop an automated irrigation system. This would enable farmers to effectively monitor and control water application in the field by sending command through SMS and receiving pumping status through the mobile phone.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 19688-19697 ◽  
Author(s):  
Iftikhar Ahmed Saeed ◽  
Shi Qinglan ◽  
Minjuan Wang ◽  
Salman Latif Butt ◽  
Lihua Zheng ◽  
...  

2018 ◽  
Vol 255 ◽  
pp. 1166-1172 ◽  
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Hui Zhang ◽  
Min Shen ◽  
Yucheng Liu ◽  
...  

2020 ◽  
pp. 46-52
Author(s):  
A. I. Olateju ◽  
M. A. Sodunke ◽  
T. T. Abatan ◽  
O. O. Alagbe

The developed system consists of a solenoid valve and water pump which are directly linked to a microcontroller (ATMEGA-328PU) unit through a transistor -network based relay switching unit. A soil moisture sensor linked to the soil senses the dryness and wetness of the soil. The microcontroller and soil moisture sensor utilizes a 5V power supply unit given through a regulated supply via a regulator called LM7805.A 12V power supply units activates the normally open units of the relay linked to the solenoid valve and the pump. Whenever the dryness of the soil is sensed, the microcontroller decodes and sends an instruction to the solenoid valve to open and the water pump to start driving the water which is sprinkled through the sprinkler. The performance of the system has been evaluated and the response time is fast.


2004 ◽  
Vol 47 (4) ◽  
pp. 1281-1287 ◽  
Author(s):  
P. AndradeSánchez ◽  
S. K. Upadhyaya ◽  
J. AgüeraVega ◽  
B. M. Jenkins

2019 ◽  
Vol 5 (1) ◽  
pp. 97-106
Author(s):  
Rudi Budi Agung ◽  
Muhammad Nur ◽  
Didi Sukayadi

The Indonesian country which is famous for its tropical climate has now experienced a shift in two seasons (dry season and rainy season). This has an impact on cropping and harvesting systems among farmers. In large scale this is very influential considering that farmers in Indonesia are stilldependent on rainfall which results in soil moisture. Some types of plants that are very dependent on soil moisture will greatly require rainfall or water for growth and development. Through this research, researchers tried to make a prototype application for watering plants using ATMEGA328 microcontroller based soil moisture sensor. Development of application systems using the prototype method as a simple method which is the first step and can be developed again for large scale. The working principle of this prototype is simply that when soil moisture reaches a certainthreshold (above 56%) then the system will work by activating the watering system, if it is below 56% the system does not work or in other words soil moisture is considered sufficient for certain plant needs.


Sign in / Sign up

Export Citation Format

Share Document