scholarly journals FABRICATION OF HYBRID COMPOSITES ON RICE HUSK ASH REINFORCED WITH Al ALLOY COMPOSITE

IJIREEICE ◽  
2021 ◽  
Vol 9 (12) ◽  
Author(s):  
Sivaraman S ◽  
Kalaikovan M ◽  
Muthumari M
2018 ◽  
Vol 144 ◽  
pp. 02002
Author(s):  
Y. M. Shivaprakash ◽  
Anunoy Sarkar ◽  
Sunit Jha ◽  
Muktesh Singh ◽  
Shachin Bangera

Author(s):  
Md. Rahat Hossain ◽  
Md. Hasan Ali ◽  
Md. Al Amin ◽  
Md. Golam Kibria ◽  
Md. Shafiul Ferdous

Aluminium matrix composites (AMCs) used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs) such as aluminium alloy (A356) reinforced with rice husk ash particles (RHA) are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356) reinforced with various amounts of (2%, 4%, and 6%) rice husk ash (RHA) particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA) and aluminium matrix composites (AMCs). In future, the optimum percentages of rice husk ash (RHA) to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM) will be applied for further investigation.


2018 ◽  
Vol 25 (4) ◽  
pp. 15-22
Author(s):  
Abbas Y. Awad ◽  
Mohammed N. Ibrahim ◽  
Mohamed K. Hussein

A336.0 aluminum alloy used to fabricate hybrid composites using rice husk ash (RHA) and MgO particles as reinforcement. The influence of the particles on the wear behavior of A336.0 aluminum alloy as a matrix that reinforced with MgO and RHA was investigated. Firstly, the rice husk burned at 700°C and then heat treated at 1100°C for 2 hrs. The ash characterized by X-ray florescence and X-ray diffraction. Less than 53 and 125 micron are the particle sizes of MgO and RHA respectively. The hybrid composites manufactured using stir casting method in two steps. A336.0 aluminum alloy reinforced with 4:0, 3:1, 2:2, 1:3 and 0:4 of RHA: MgO with 10 wt% total reinforcement phase. Optical microscope and X-ray diffraction were used to characterize the prepared hybrid composites. Dry sliding wear, hardness, apparent density, percentage of porosity and coefficient of friction were examined. Results indicated that porosity, apparent density and hardness enhanced with increasing MgO, while increasing wt% of RHA decreased the apparent density. Results indicated that with inceasing the applied load the wear rate of the composites was enhanced. Coefficient of friction varies inversely with applied load and wt% of RHA. Hardness increased with increasing RHA while the friction coefficient and the wear rate decreased. The minimum wear rates were at 10% RHA and Al-alloy-(RHA-MgO) [3:1] composites, while the minimum friction coefficients were at 10% RHA composites.


2016 ◽  
Vol 1820 ◽  
Author(s):  
Amin Bahrami ◽  
Martin I. Pech-Canul ◽  
Carlos A. Gutiérrez ◽  
Niloofar Soltani

ABSTRACTThe quantitative effect of the following parameters on the one single step pressureless infiltration characteristics of bilayer B4Cp/rice-husk ash (RHA) porous preforms by aluminum alloys was investigated using the Taguchi method and analysis of variance (ANOVA): infiltration temperature and time, B4C particle size, RHA percentage, percentage porosity in the preforms, and magnesium content in the alloy. The contributions of each of the parameters to the retained porosity, hardness and modulus of elasticity of the resulting bilayer composites were determined. The parameters that most significantly impact the modulus of elasticity (E) of the resulting composites are chemical composition of Al alloy followed by porosity of preforms and B4C particle size. Their relative contributions to the variance in the values of modulus of elasticity are 25.7, 22.48 and 18.44 %, respectively. Verification tests conducted using the established optimum parameters show a good agreement with those of projected values.


2018 ◽  
Vol 144 ◽  
pp. 02002
Author(s):  
Y. M. Shivaprakash ◽  
Anunoy Sarkar ◽  
Sunit Jha ◽  
Muktesh Singh ◽  
Shachin Bangera

In this research work Aluminium alloy with Cu (4.5%) as the major alloying element is used as the matrix in which SiC and Rice Husk Ash (RHA) are dispersed to develop a hybrid composite. The dispersion is done by the motorized stir casting arrangement. The composite is fabricated by varying the proportions of the reinforcements in the base alloy. The composite specimens were tested for density changes, hardness and the wear. The microstructure images showed a uniform dispersion of the reinforcements in the matrix and this resulted in higher strength to weight ratio. The increase in strength of the composite is probably attributed to the increase in the dislocation density. Also, the abrasive wear resistance of the produced composite is found to be superior as compared to the matrix alloy because of the hard-ceramic particles in the reinforcements.


Sign in / Sign up

Export Citation Format

Share Document