scholarly journals LISMA_HDS language for modeling heterogeneous dynamic systems

Author(s):  
Evgeny Popov ◽  
◽  
Yury Shornikov ◽  

Heterogeneous dynamic systems (HDS) simultaneously describe processes of different physical nature. Systems of this kind are typical for numerous applications. HDSs are characterized by the following features. They are often multimode or hybrid systems. In general, their modes are defined as initial value problems (Cauchy problems) for implicit differential-algebraic systems of equations. Due to the presence of heterogeneous dynamic components or processes evolving in both time and space, the dimension of the complete system of equations may be pretty high. In some cases, the system of equations has an internal structure, for instance, the differential-algebraic system of equations approximating a partial differential equation by the method of lines. An original huge system of equations can then be algorithmically rewritten in a compact form. Moreover, heterogeneous hybrid dynamical systems can generate events of qualitatively different types. Therefore one has to use different numerical event detection algorithms. Nowadays, HDSs are modeled and simulated in computer environments. The modeling languages widely used by engineers do not allow them to fully specify all the properties of the systems of this class. For instance, they do not include event typing constructs. That is why a declarative general-purpose modeling language named LISMA_HDS has been developed for the computer-aided modeling and ISMA simulation environment. The language takes into account all of the characteristic features of HDSs. It includes constructs for plain or algorithmic declaration of model constants, initial value problems for explicit differential-algebraic systems of equations, and initial guesses for variables. It also allows researchers to define explicit time events, modes and transitions between them upon the occurrence of events of different types, to use macros and implement event control. LISMA_HDS is defined by a generative grammar in an extended Backus-Naur form and semantic constraints. It is proved that the grammar belongs to the LL(2) subclass of context-free grammars.

Author(s):  
Michael Günther ◽  
Adrian Sandu

AbstractMany complex applications require the solution of initial-value problems where some components change fast, while others vary slowly. Multirate schemes apply different step sizes to resolve different components of the system, according to their dynamics, in order to achieve increased computational efficiency. The stiff components of the system, fast or slow, are best discretized with implicit base methods in order to ensure numerical stability. To this end, linearly implicit methods are particularly attractive as they solve only linear systems of equations at each step. This paper develops the Multirate GARK-ROS/ROW (MR-GARK-ROS/ROW) framework for linearly-implicit multirate time integration. The order conditions theory considers both exact and approximative Jacobians. The effectiveness of implicit multirate methods depends on the coupling between the slow and fast computations; an array of efficient coupling strategies and the resulting numerical schemes are analyzed. Multirate infinitesimal step linearly-implicit methods, that allow arbitrarily small micro-steps and offer extreme computational flexibility, are constructed. The new unifying framework includes existing multirate Rosenbrock(-W) methods as particular cases, and opens the possibility to develop new classes of highly effective linearly implicit multirate integrators.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Wenjin Li ◽  
Yanni Pang

We study a type of iterative method and apply it to time-fractional Swift-Hohenberg equation with initial value. Using this iterative method, we obtain the approximate analytic solutions with numerical figures to initial value problems, which indicates that such iterative method is effective and simple in constructing approximate solutions to Cauchy problems of time-fractional differential equations.


Author(s):  
Sumayah Ghaleb Othman ◽  
Yahya Qaid Hasan

Aims/ Objectives: In this article, we use Adomian Decomposition method (ADM) for solving initial value problems in the higher order ordinary differential equations. Many researchers have used the ADM in order to find convergent as well as exact solutions of different types of equations. Therefore, the ADM is considered as an effective and successful method for solving differential equations. In this paper, we presented some suggested amendments to the ADM by using a new differential operator in order to find solutions for higher order types of equations. We demonstrated the effectiveness of this method through many examples and we find out that we get an approximate solutions using the proposed amendments. We can conclude that the suggested modification of ADM is afftective and produces reliable results.


Author(s):  
Edit Miletics ◽  

The numerical treatment of ODE initial-value problems has been intensively researched. Energy-conservative algorithms are very important to dynamic systems. For the Hamiltonian system the symplectic algorithms are very effective. Powerful computers and algebraic software enable the creation of efficient numerical algorithms for solving ODE initial-value problems. In this paper, we propose an adaptive energy-conservative numerical-analytical algorithm for Hamiltonian systems. This algorithm is adaptable to initial-value problems where some quantities are preserved. The algorithm and its efficiency are presented for solving two-body and linear oscillator problems.


In this, the first of a series of papers on numerical relativity, the characteristic initial value problem is posed in a form suitable for numerical integration. It can be reduced to the solution of two initial value problems for sets of ordinary differential equations (on the initial surfaces) and the solution of two initial value problems for hyperbolic systems of equations, one linear, one quasilinear. The initial data may be specified freely. Subsequent papers will develop numerical solutions of Einstein’s equations with use of this formalism.


2013 ◽  
Vol 11 ◽  
pp. 15-21
Author(s):  
S. F. Helfert

Abstract. The Method of Lines (MoL) is a semi-analytical numerical algorithm that has been used in the past to solve Maxwell's equations for waveguide problems. It is mainly used in the frequency domain. In this paper it is shown how the MoL can be used to solve initial value problems in the time domain. The required expressions are derived for one-dimensional structures, where the materials may be dispersive. The algorithm is verified with numerical results for homogeneous structures, and for the concatenation of standard dielectric and left handed materials.


Sign in / Sign up

Export Citation Format

Share Document