Design of an Optimal Controller in a Voltage Regulation System When Powering Submersible Electromechanical Equipment

Author(s):  
Elena Shandarova ◽  
◽  
Viktor Bukreev ◽  
Victor Rulevskiy ◽  
◽  
...  

The paper addresses the issue of designing an optimal controller using the measured state variables of a nonlinear multi-dimensional object with transient disturbances – power supply of submersible electromechanical equipment with AC transmission via a cable power line. We present an approach to the design of an adjustable PI-controller enabling to determine its closed-form parameters with the linearized model of a complex control object. A numerical example for simulation of a power supply highlighting capability of the design algorithm for the optimal controller with the quadratic criteria is provided. The obtained results can be used to tackle problems of adaptive control of remotely powered electromechanical objects without sensors.

2018 ◽  
Vol 41 ◽  
pp. 03013 ◽  
Author(s):  
Fedor Nepsha ◽  
Roman Belyaevsky

In this paper, the authors propose an algorithm for interrelated voltage regulation in the power supply system of coal mine which allows to provide a normative voltage level and to minimize the level of active power consumption. A feature of the proposed algorithm is a separate consideration of discrete and nondiscrete variables. Nondiscrete variables are represented as a state matrix. The optimization of nondiscrete variables is performed for each state. The algorithm chooses a state with the minimal active power consumption. The obtained values of discrete and nondiscrete variables are transferred in the form of control signals to voltage regulation devices. In this case, the periodicity of the switching is determined by the resource of the on-load tap-changing device. The use of this algorithm will theoretically allow increasing the energy efficiency of power supply systems of coal mines.


Author(s):  
Aleksandr Vinogradov ◽  
Alina Vinogradova ◽  
Igor Golikov ◽  
Vadim Bolshev

Abstract Development of smart grids for power supply to rural consumers assumes the creation of adaptive voltage regulation systems in 0.38 … 10 kV electrical networks as one of the directions. This paper considers a new approach to create an algorithm for controlling the technical means of regulation and voltage stabilization. The proposed adaptive voltage regulation system allows collecting and processing information on the actual voltage at the consumer inputs and automatically determine the voltage regulation coefficient. The developed mathematical model allows calculating the voltage regulation coefficient depending on the voltage at various points of the 0.38 kV electric network. In the paper there are also new methods of adaptive automatic voltage regulation in the 0.38 kV electrical networks and the requirements to the functional capabilities of this system. The article suggests technical solutions for the implementation of adaptive automatic voltage regulation system. The successful tests of experimental model of this system have been carried out.


2021 ◽  
Vol 8 (1) ◽  
pp. 059-066
Author(s):  
K. S. TESLOV ◽  

The article contains a description of the developed mathematical models of a control object (a multi-flow furnace of an oil refinery), a MATLAB application that demonstrates the simulation process, as well as a multivariable automatic control system. The block diagrams of the model of the control system of the multi-stream furnace are presented. The purpose of this work is to develop a demonstration model of a multi-connected control system for a multi-flow furnace of an oil refinery. A description of the created software package based on the MATLAB interactive environment for scientific and engineering calculations with the Simulink and AppDesigner extension packages is presented, which contains tools for modeling the processes of the selected object under the conditions of disturbances acting on the object, as well as allowing visualization of the results obtained and plotting time characteristics.


Author(s):  
Elrnar Zeitler

Considering any finite three-dimensional object, a “projection” is here defined as a two-dimensional representation of the object's mass per unit area on a plane normal to a given projection axis, here taken as they-axis. Since the object can be seen as being built from parallel, thin slices, the relation between object structure and its projection can be reduced by one dimension. It is assumed that an electron microscope equipped with a tilting stage records the projectionWhere the object has a spatial density distribution p(r,ϕ) within a limiting radius taken to be unity, and the stage is tilted by an angle 9 with respect to the x-axis of the recording plane.


2013 ◽  
Vol 709 ◽  
pp. 408-412
Author(s):  
Yan Ling Zhao ◽  
Rong Xing Liu

Abstract. A mid-frequency magnetron sputtering (MFMS) power supply based on TL494 and MCU was introduced. A Buck Chopper and full bridge inverter were applied to the main circuit. The PWM controller TL494 was used in the Buck voltage-regulation control circuit to realize closed loop control. The drive signal of the IGBT in full bridge inverter was based on precise digital pulse width modulator (DPWM) signal produced by the MCU M30290. The DPWM can be set by potentiometer so the power supply can output the square wave with adjustable frequency and duty cycle. The power supply was operated in constant current mode. For micro or strong arcing of the target, different safeguards were adopted by the control circuit. At last, the system test and experimental results show that the stability, reliability and tuning range of the MFMS power supply can meet the requirements of the magnetron sputtering coating.


2013 ◽  
Vol 347-350 ◽  
pp. 1358-1362
Author(s):  
Zi Сheng Li ◽  
Li Xu ◽  
Bao Shan Yuan

The purpose in this paper is the design of the control to switching power supply for small perturbations. By the theoretical analysis and calculation, with the output filter inductor current and filter capacitor voltage switching power supply as two state variables, the conclusion is that control of the output filter inductor current sampling do well in the anti-jamming. The simulation is made for verification. And comparing the results, the current control mode shows a very strong anti-interference ability.


Author(s):  
Vitaly Vysotsky ◽  
◽  
Igor Markov ◽  
Yuri Matveev ◽  
◽  
...  

The article deals with the main trends in the development of marine automatic AC electric drive systems. A variant of the implementation of an electric drive using an electromechanical converter of a synchronous machine with electromagnetic field excitation is presented. A promising electric drive system with a valve engine for the icebreaker's with the Azipod propulsion and steering system is proposed. The aim of the work is to eliminate the structural complexity and expand the functional capabilities of the electric drive by using a scalar automatic control system of the frequency of rotation in the two-zone control of the valve motor of the EPS. The novelty lies in the use of the approach and representation of the control object-a valve motor as an analog of a DC collector motor controlled by an armature and by a field. The analysis of control processes is directly related to the processes of electromechanical energy conversion occurring in a synchronous machine.


Sign in / Sign up

Export Citation Format

Share Document