Adaptive Automatic Voltage Regulation in Rural 0.38 kV Electrical Networks

Author(s):  
Aleksandr Vinogradov ◽  
Alina Vinogradova ◽  
Igor Golikov ◽  
Vadim Bolshev

Abstract Development of smart grids for power supply to rural consumers assumes the creation of adaptive voltage regulation systems in 0.38 … 10 kV electrical networks as one of the directions. This paper considers a new approach to create an algorithm for controlling the technical means of regulation and voltage stabilization. The proposed adaptive voltage regulation system allows collecting and processing information on the actual voltage at the consumer inputs and automatically determine the voltage regulation coefficient. The developed mathematical model allows calculating the voltage regulation coefficient depending on the voltage at various points of the 0.38 kV electric network. In the paper there are also new methods of adaptive automatic voltage regulation in the 0.38 kV electrical networks and the requirements to the functional capabilities of this system. The article suggests technical solutions for the implementation of adaptive automatic voltage regulation system. The successful tests of experimental model of this system have been carried out.

Author(s):  
Elena Shandarova ◽  
◽  
Viktor Bukreev ◽  
Victor Rulevskiy ◽  
◽  
...  

The paper addresses the issue of designing an optimal controller using the measured state variables of a nonlinear multi-dimensional object with transient disturbances – power supply of submersible electromechanical equipment with AC transmission via a cable power line. We present an approach to the design of an adjustable PI-controller enabling to determine its closed-form parameters with the linearized model of a complex control object. A numerical example for simulation of a power supply highlighting capability of the design algorithm for the optimal controller with the quadratic criteria is provided. The obtained results can be used to tackle problems of adaptive control of remotely powered electromechanical objects without sensors.


2018 ◽  
Vol 41 ◽  
pp. 03013 ◽  
Author(s):  
Fedor Nepsha ◽  
Roman Belyaevsky

In this paper, the authors propose an algorithm for interrelated voltage regulation in the power supply system of coal mine which allows to provide a normative voltage level and to minimize the level of active power consumption. A feature of the proposed algorithm is a separate consideration of discrete and nondiscrete variables. Nondiscrete variables are represented as a state matrix. The optimization of nondiscrete variables is performed for each state. The algorithm chooses a state with the minimal active power consumption. The obtained values of discrete and nondiscrete variables are transferred in the form of control signals to voltage regulation devices. In this case, the periodicity of the switching is determined by the resource of the on-load tap-changing device. The use of this algorithm will theoretically allow increasing the energy efficiency of power supply systems of coal mines.


2020 ◽  
Vol 178 ◽  
pp. 01068
Author(s):  
I.O. Golikov ◽  
A.V. Vinogradov ◽  
V.E. Bolshev ◽  
A.V. Vinogradova ◽  
M. Jasinski ◽  
...  

This article describes the features of voltage regulation in electrical networks of 35, 110, 220 kV. The structural diagram of the 35/10/0.4 kV network is presented. The paper also describes the adaptive automatic voltage regulation system which allows regulating the voltage taking into account the actual voltage values at the consumers’ inputs. The structural diagram of the adaptive automatic voltage regulation system in the 0.4 kV electrical network using a boost transformer as an additional means of voltage regulation is given. The system is based on voltage sensors installed in different parts of an eletcrical network sending information on voltage values to to the processing unit which generates a signal for voltage regulating supplied to the executive device and the working body whuch, in turn, change the on-load tap-changer position of a transformer. The paper justifies the need for the enhancement of the adaptive automatic voltage regulation system for different voltage classes wich allows controlling a voltage change at different power supply system levels and regulating voltage level in accordance with this change. For this problem the multi-level adaptive automatic voltage regulation systemis proposed. The system allows regulating the voltage not only in the 0.4 kV network but also in networks of higher voltage classes. The proposed system can be integrated into the structure of intelligent electrical networks.


Author(s):  
I. Lapteva ◽  
E. Karnakov

The analysis of one of the important tasks arising in the process of automating the control of the modes of operation of electrical networks is given – maintaining the specified voltage levels on the busbars of substations. Centralized voltage regulation at substations provides for the widespread use of power transformers and autotransformers containing a load control device (RPN). A method for modeling the operation of a voltage regulation system of a power transformer with RPN devices is proposed.


2020 ◽  
Vol 1 (57) ◽  
pp. 28-32
Author(s):  
V. Perepecheny

This article presents the results of research on the parameters of electrical networks with a voltage of 6 (10) and 0.38 kV in relation to capital investments. The analysis of existing methods of estimation of parameters before designing for power supply networks in a small town with low load density is carried out. In modern conditions, in the distribution of electrical networks is of paramount importance the introduction of energy-saving schemes and parameters of power supply systems. One of the main ways to implement them is to increase the efficiency of 6-10 / 0.38 kV networks. In the actual design of electrical networks, economic proportionality can not always be maintained for various reasons: the impact of technical constraints, the discreteness of the rated power of transformers and cable crossing scales, a significant deviation of individual capacities of consumers from the average value. In that case there is an increase in the reduced costs. A methodology for determining the optimal power of transformer substations and optimal sections of 0.38 kV power transmission lines is proposed, taking into account the probable nature of the applied load. When assembling the power supply circuit for the optimal form of parameters, voltage, principles of voltage regulation and reactive power compensation. Decisions of this kind are substantiated by technical and economic comparisons of a series of technically acceptable variants of power supply networks. An important measure that facilitates the selection of the most economical option is the assessment of the proposed project, which relates to the selection of the optimal capacity of transformer substation (TS) networks using calculation formulas. The aim of the research was to improve the existing methods on the basis of separate accounting of the reliability coefficient of 0.38 kV and 6-10 kV network. Key words - electric power supply network, network parameters, transformer substation, load density, line wire section, specific load, unit costs, optimum parameter, distribution networks, electric energy.


2020 ◽  
Vol 216 ◽  
pp. 01017
Author(s):  
Vladimir Shuin ◽  
Tatiana Shadrikova ◽  
Olga Dobryagina ◽  
Elena Shagurina

Single-phase earth faults are the predominant type of damage in distribution 6-10 kV cable networks, and are often the root cause of power failures to consumers, accompanied by significant economic damage. Therefore, reliability for about 50% of consumers of industrial and urban power supply systems depends on the technical perfection of protection against earth faults. The currently used approach to the design of protection and signaling of earth faults, based on the application of the existing concept of selectivity of considered protection, does not always ensure the achievement of the main goal – increasing the reliability of power supply to consumers. To improve the reliability of power supply, new technical solutions are needed that provide not only selective detection of the damaged connection for all types of single-phase earth faults, but also the recognition of the most dangerous for the network and the protected connection faults types for automatic selection the most effective protection action (signal or shutdown). Within the framework of the existing approach, the design of protection against earth faults with the specified properties is possible only on the basis different methods of its implementation in networks with different neutral grounding modes, which is associated with the complication of protection circuit, its design and exploitation. A new approach has been proposed that provides universal technical solutions for protection and signaling of earth faults for 6–10 kV cable networks with various neutral grounding modes. To implement the proposed approach, universal adaptive current protection and universal admittance protection based on the control of the capacitance of zero sequence loop of the protected connection have been developed.


2017 ◽  
Vol 53 (2) ◽  
pp. 265-274
Author(s):  
B. F. Simonov ◽  
S. A. Kharitonov ◽  
E. Ya. Bukina ◽  
D. V. Makarov ◽  
A. S. Kharitonov

Sign in / Sign up

Export Citation Format

Share Document