scholarly journals Multiple parallel fuzzy expert systems utilizing a hierarchical fuzz model

2008 ◽  
Vol 53 (No. 2) ◽  
pp. 89-93
Author(s):  
S. Aly ◽  
I. Vrana

Business, economic, and agricultural YES-or-NO decision making problems often require multiple, different and specific expertises. This is due to the nature of such problems in which decisions may be influenced by multiple different, relevant aspects, and accordingly multiple corresponding expertises are required. Fuzzy expert systems (FESs) are widely used to model expertises due to its capability to model real world values, which are not always exact, but frequently vague or uncertain. In this research, different expertises, relevant to the decision solution, are modeled using several corresponding FESs. Every FES produces a crisp numerical output expressing the degree of bias toward “Yes” or “No“ decision. A unified scale is standardized for numerical outputs of all FESs. This scale ranges from 0 to 10, where the value 0 represents a complete bias ”No“ decision and the value 10 represents a complete bias to ”Yes“ decision. Intermediate values reflect the degree of bias either to ”Yes“ or ”No“ decision. These systems are then integrated to comprehensibly judge the binary decision problem, which requires all such expertises. Practically, the main reasons for independency among the multiple FESs can be related to maintainability, decision responsibility, analyzability, knowledge cohesion and modularity, context flexibility, sensitivity of aggregate knowledge, decision consistency, etc. The proposed mechanism for realizing integration is a hierarchical fuzzy system (HFS) based model, which allows the utilization of the existing If-then knowledge about how to combine/aggregate the outputs of FESs.

2011 ◽  
Vol 57 (No. 5) ◽  
pp. 217-225
Author(s):  
S. Aly ◽  
I. Vrana

Business, economic, and agricultural YES-or-NO decision making problems often require multiple, different and specific expertises. This is due to the nature of such problems in which decisions may be influenced by multiple different, relevant aspects, and accordingly multiple corresponding expertises are required. Fuzzy expert systems (FESs) are widely used to model expertises due to their capability to model the real world values, which are not always exact, but frequently vague, or uncertain. In this paper, different expertises relevant to the decision solution are modelled using several corresponding FESs. These systems are then integrated to comprehensibly judge the YES-or-NO binary decision making problem, which requires all such expertises. This integration involves several independent and autonomous FESs arranged synergistically to suit a varying problem context. Then, the main focus of this paper is to realize such integration through combining the crisp numerical outputs produced by multiple FESs. The newly developed methods MPDI and WMPDI are utilized to combine the crisp outputs of multiple parallel FESs, whilst weights are determined through the analytical hierarchy process (AHP). The presented approach of utilizing the proved efficient MPDI combining criteria along with AHP will encourage practitioners to take advantage of integration and cooperation among multiple numerically outputting knowledge sources in general.


2012 ◽  
Vol 52 (No. 4) ◽  
pp. 187-196
Author(s):  
S. Aly ◽  
I. Vrana

The multiple, different and specific expertises are often needed in making YES-or-NO (YES/NO) decisions for treating a variety of business, economic, and agricultural decision problems. This is due to the nature of such problems in which decisions are influenced by multiple factors, and accordingly multiple corresponding expertises are required. Fuzzy expert systems (FESs) are widely used to model expertise due to its capability to model real world values which are not always exact, but frequently vague, or uncertain. In addition, they are able to incorporate qualitative factors. The problem of integrating multiple fuzzy expert systems involves several independent and autonomous fuzzy expert systems arranged synergistically to suit a varying problem context. Every expert system participates in judging the problem based on a predefined match between problem context and the required specific expertises. In this research, multiple FESs are integrated through combining their crisp numerical outputs, which reflect the degree of bias to the Yes/No subjective answers. The reasons for independency can be related to maintainability, decision responsibility, analyzability, knowledge cohesion and modularity, context flexibility, sensitivity of aggregate knowledge, decision consistency, etc. This article presents simple algorithms to integrate multiple parallel FES under specific requirements: preserving the extreme crisp output values, providing for null or non-participating expertises, and considering decision-related expert systems, which are true requirements of a currently held project. The presented results provides a theoretical framework, which can bring advantage to decision making is many disciplines, as e.g. new product launching decision, food quality tracking, monitoring of suspicious deviation of the business processes from the standard performance, tax and customs declaration issues, control and logistic of food chains/networks, etc. 


2010 ◽  
Vol 2010 ◽  
pp. 1-29 ◽  
Author(s):  
Sehraneh Ghaemi ◽  
Sohrab Khanmohammadi ◽  
Mohammadali Tinati

In this study, we propose a hierarchical fuzzy system for human in a driver-vehicle-environment system to model takeover by different drivers. The driver's behavior is affected by the environment. The climate, road and car conditions are included in fuzzy modeling. For obtaining fuzzy rules, experts' opinions are benefited by means of questionnaires on effects of parameters such as climate, road and car conditions on driving capabilities. Also the precision, age and driving individuality are used to model the driver's behavior. Three different positions are considered for driving and decision making. A fuzzy model calledModel Iis presented for modeling the change of steering angle and speed control by considering time distances with existing cars in these three positions, the information about the speed and direction of car, and the steering angle of car. Also we obtained two other models based on fuzzy rules calledModel IIandModel IIIby using Sugeno fuzzy inference.Model IIandModel IIIhave less linguistic terms thanModel Ifor the steering angle and direction of car. The results of three models are compared for a driver who drives based on driving laws.


Author(s):  
M. Kalpana ◽  
A. V. Senthil Kumar

Agriculture is an important source of livelihood and economy of a country. Decision making plays an important role in various fields. Farmers are the backbone of agriculture. They need expert systems to make decisions during land preparation, sowing, fertilizer management, irrigation management, etc. for farming. Expert systems may suggest precisely suitable solutions to farmers for all the activities. Uncertainty deals with various situations during sowing, weed management, diagnosis of disease, insect, storage, marketing of product, etc. Uncertainty is compounded by many facts that many decision-making activities in agriculture are often vague or based on perception. Imprecision, vagueness, and insufficient knowledge are handled using the concept of fuzzy logic. Fuzzy logic with expert systems helps find uncertain data. Fuzzy expert systems are oriented with numerical processing.


Author(s):  
Gisella Facchinetti ◽  
Carlo Alberto Magni ◽  
Giovanni Mastroleo ◽  
Marina Vignola

2021 ◽  
Vol 11 (6) ◽  
pp. 2817
Author(s):  
Tae-Gyu Hwang ◽  
Sung Kwon Kim

A recommender system (RS) refers to an agent that recommends items that are suitable for users, and it is implemented through collaborative filtering (CF). CF has a limitation in improving the accuracy of recommendations based on matrix factorization (MF). Therefore, a new method is required for analyzing preference patterns, which could not be derived by existing studies. This study aimed at solving the existing problems through bias analysis. By analyzing users’ and items’ biases of user preferences, the bias-based predictor (BBP) was developed and shown to outperform memory-based CF. In this paper, in order to enhance BBP, multiple bias analysis (MBA) was proposed to efficiently reflect the decision-making in real world. The experimental results using movie data revealed that MBA enhanced BBP accuracy, and that the hybrid models outperformed MF and SVD++. Based on this result, MBA is expected to improve performance when used as a system in related studies and provide useful knowledge in any areas that need features that can represent users.


Author(s):  
Jessica M. Franklin ◽  
Kai‐Li Liaw ◽  
Solomon Iyasu ◽  
Cathy Critchlow ◽  
Nancy Dreyer

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document