scholarly journals The effect of inorganic and organically bound forms of selenium on glutathione peroxidase activity in the blood of goats

2011 ◽  
Vol 56 (No. 2) ◽  
pp. 75-81 ◽  
Author(s):  
L. Pavlata ◽  
L. Misurova ◽  
A. Pechova ◽  
R. Dvorak

The goal of the experiment was to compare the effect of supplementation of inorganic and the new organically bound (lactate-protein selenium complex) form of selenium (Se) in feed for goats. The 31 goats were split into three groups: control (C) without Se supplementation, AN group administered sodium selenite, ORG group administered lactate-protein selenium complex (Selene Chelate, Agrobac, Czech Republic) produced by cultivation of Lactobacillus acidophilus on a substrate containing natrium selenite. The total Se intake in goats was 0.15 mg in group C, and 0.43 mg in the groups AN and ORG. The effect of Se supplementation was assessed based on the determination of Se concentration and the activity of glutathione peroxidase (GSH-Px) in whole blood. Samples were taken before the beginning of Se supplementation, 14 and 30 days after the start of supplementation, and then two and three months after the beginning of supplementation. Average Se concentrations in the blood of goats in individual groups (C, AN, ORG) before the start of supplementation were 109.6 ± 34.3, 117.5 ± 34.7, and 105.4 ± 43.6 μg/l respectively, and the activity of GSH-Px in whole blood was 745.3 ± 289.2, 810.7 ± 280.4, and 791.0 ± 398.1 μkat/l respectively. While in group C goats neither the Se concentration nor the GSH-Px activity changed substantially during the experiment, in the goats in the experimental groups there was a statistically significant increase (P < 0.01) in both Se concentrations and the GSH-Px activities. At the end of the experiment Se concentrations in the blood of AN and ORG groups amounted to 168.5 ± 12.2 and 168.8 ± 26.8 μg/l. The GSH-Px activities in goats supplemented with Se also increased significantly over the course of the experiment (at the end of the experiment it was 1178.0 ± 127.3 in the AN group and 1030.1 ± 152.3 μkat/l in the ORG group), and the difference between the groups was significant (P = 0.038). Regarding the dynamics of GSH-Px activity changes during the monitored period, a markedly quicker increase in GSH-Px activity was recorded in the AN group – one month after the beginning of Se supplementation, compared to three months after the beginning of Se supplementation in the ORG group. The results thus show that the effects of supplementation with selenite and the lactate-protein selenium complex are similar with regard to Se status, but that the increase in GSH-Px activity occurred much faster with selenite, which therefore appears to be a more biologically available form of selenium for creation of biologically active selenoproteins.

2012 ◽  
Vol 57 (No. 8) ◽  
pp. 361-369 ◽  
Author(s):  
L. Pavlata ◽  
L. Mišurová ◽  
A. Pechová ◽  
R. Dvořák

The goal of the experiment was to compare the effect of four different forms of selenium (Se) &minus; sodium selenite (SS), lactate-protein selenium complex (SL), selenium enriched yeast (SY), and selenium-proteinate (SP) supplemented to pregnant goats on Se concentration and glutathione peroxidase (GSH-Px) activity in the blood of goats on the day of delivery and also on Se concentration and GSH-Px activity in the blood of newborn kids. The experiment involved 33 pregnant goats of White Short-haired breed. The supplementation started 6 weeks before the parturition. The goats were divided into 5 groups: control group&nbsp;C, not supplemented, and 4 trial groups (SL, SP, SS, SY), which received Se in the above stated forms by the means of supplemented pellets (300 g per animal per day) at a rate 900 &mu;g Se/kg of dry matter. The average Se concentrations in the blood of the goats were 79.6 &mu;g/l in group C, 152.6 &mu;g/l in group SL, 167.1&nbsp;&mu;g/l in group SP, 144.9 &mu;g/l in group SS, and 152.9 &mu;g/l in group SY. Selenium concentrations in all 4 trial groups were significantly higher (P &lt; 0.01) than in control group, however no significant difference was found between individual trial groups. Likewise, the activity of GSH-Px in goat blood increased significantly in all supplemented groups compared to the controls; however we did not discover any significant differences in activity of GSH-Px between the individual selenium-supplemented groups. The Se concentrations in the blood of kids were significantly (P &lt; 0.01) higher in the selenium-supplemented groups (SL &ndash; 94.9&nbsp;&mu;g/l, <br />SP &ndash; 87.5 &mu;g/l, SS &ndash; 87.6 &mu;g/l, SY &ndash; 92.5 &mu;g/l) than in the control group (C &ndash; 49.4 &mu;g/l), but we did not discover any differences between the individual experimental groups. The activity of GSH-Px in the blood of the kids tended towards higher values in the supplemented groups than in the control group, but the values were significantly higher (P &lt; 0.05) only in groups SY and SL. We have found significant correlation between GSH-Px activity and Se concentration in the blood of goats (r = 0.86) and newborn kids (r = 0.95). Likewise, there was significant correlation between Se concentration in the blood of goats and their kids (r&nbsp;= 0.74). We discovered that the kids are reaching physiologically only about 60% of Se status in whole blood in comparison with their mothers. Our results are suggesting that all the above forms of Se were similarly utilised and transferred into the foetus in the goats. &nbsp;


Author(s):  
P Bijster ◽  
H L Vader ◽  
C L J Vink

We have shown that the sodium concentration in whole blood measured by direct potentiometry is higher than in plasma. The ‘erythrocyte-effect’, already described by Siggaard Andersen, is most pronounced for instruments equipped with a reference electrode with an open static liquid junction and is thus a general phenomenon. Instruments with a modified liquid junction show less interference. The same phenomenon appears for the determination of the potassium concentration, although the difference between whole blood and plasma, when measured with instruments equipped with a modified liquid junction, can be neglected in practice.


2009 ◽  
Vol 54 (No. 7) ◽  
pp. 324-332 ◽  
Author(s):  
L. Misurova ◽  
L. Pavlata ◽  
A. Pechova ◽  
R. Dvorak

The aim of this study was to evaluate the effect of a long-term peroral selenium supplementation in the form of sodium selenite and selenium lactate-protein complex by comparing selenium concentrations and glutathione peroxidase activity in blood of goats and their kids as well as comparing selenium concentrations in goat colostrums. For the study, a total of 27 clinically healthy pregnant white shorthair goats were used. They were divided to three groups, i.e., the control group (C) without any selenium supplementation, sodium selenite group (E1) and selenium lactate-protein complex group (E2). For four months, experimental goats received 0.43 mg of selenium per animal per day in diet; goats from the control group were given 0.15 mg of selenium per animal per day. At the beginning of the experiment, goats of all groups showed an average selenium concentration of 96 &mu;g/l in whole blood. On the parturition day, samples of first colostrum from goats and heparinized blood from goats and kids were taken. In the control group (C), average blood selenium concentrations of 111.4 ± 33.5 &mu;g/l were observed on the parturition day. In both experimental groups, selenium concentrations were significantly higher (<I>P</I> < 0.05). Average selenium concentration in the sodium selenite group (E1) was 177.2 ± 34.8 &mu;g/l and in the group supplemented with selenium lactate-protein complex (E2) 159.0 ± 28.5 &mu;g/l. Average glutathione peroxidase (GSH-Px) activity in blood of control goats (C) was 581.9 ± 99.2 &mu;kat/l, in group E1 1 154.6 ± 156.2 &mu;kat/l and in group E2 1 011.6 ± 153.6 &mu;kat/l. GSH-Px activity in experimental groups was significantly higher (<I>P</I> < 0.05) as compared with the control group. Average selenium concentrations in colostrum was in the control group 40.1 ± 12.8 &mu;g/l, in E1 99.0 ± 29.9 &mu;g/l and in group E2 79.0 ± 17.7 &mu;g/l. Colostral selenium concentrations in experimental groups were significantly higher (<I>P</I> < 0.05) as compared with the control group. No significant difference in the monitored parameters was found between experimental groups. In kids of control mothers (kC), average selenium concentrations in blood on the parturition day were 62.4 ± 22.9 &mu;g/l; kids of mothers supplemented with sodium selenite (kE1) showed average selenium levels of 100.0 ± 31.2 &mu;g/l, and the average selenium concentration in kids of mothers receiving lactate-protein complex was 83.4 ± 20.1 &mu;g/l (kE2). Average GSH-Px activity in control kids (kC) was 402.1 ± 153.9 &mu;kat/l. Kids from kE1 showed average activity of GSH-Px 806.1 ± 254.9 &mu;kat/l and kids from group kE2 529.9 ± 119.8 &mu;kat/l. Statistically significant difference (<I>P</I> < 0.05) was found only between kC and kE1 which showed significantly higher selenium concentration and GSH-Px activity. The results of this study confirm that both forms of selenium administered in experimental groups (i.e., sodium selenite and selenium lactate-protein complex) had similar biological effect in goats. However, results obtained in kids indicate a better effect of supplementation with sodium selenite.


1999 ◽  
Vol 144 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Marı́a Rosa Ros-Bullón ◽  
Paloma Sánchez-Pedreño ◽  
José Hilario Martı́nez-Liarte

Nahrung/Food ◽  
2003 ◽  
Vol 47 (6) ◽  
pp. 430-433 ◽  
Author(s):  
Angeles Torres ◽  
Rosaura Farré ◽  
María Jesús Lagarda ◽  
Javier Monleón

Sign in / Sign up

Export Citation Format

Share Document