se status
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 43)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 22 (23) ◽  
pp. 13088
Author(s):  
Qian Sun ◽  
Sebastian Mehl ◽  
Kostja Renko ◽  
Petra Seemann ◽  
Christian L. Görlich ◽  
...  

The essential trace element selenium (Se) is needed for the biosynthesis of selenocysteine-containing selenoproteins, including the secreted enzyme glutathione peroxidase 3 (GPX3) and the Se-transporter selenoprotein P (SELENOP). Both are found in blood and thyroid colloid, where they serve protective functions. Serum SELENOP derives mainly from hepatocytes, whereas the kidney contributes most serum GPX3. Studies using transgenic mice indicated that renal GPX3 biosynthesis depends on Se supply by hepatic SELENOP, which is produced in protein variants with varying Se contents. Low Se status is an established risk factor for autoimmune thyroid disease, and thyroid autoimmunity generates novel autoantigens. We hypothesized that natural autoantibodies to SELENOP are prevalent in thyroid patients, impair Se transport, and negatively affect GPX3 biosynthesis. Using a newly established quantitative immunoassay, SELENOP autoantibodies were particularly prevalent in Hashimoto’s thyroiditis as compared with healthy control subjects (6.6% versus 0.3%). Serum samples rich in SELENOP autoantibodies displayed relatively high total Se and SELENOP concentrations in comparison with autoantibody-negative samples ([Se]; 85.3 vs. 77.1 µg/L, p = 0.0178, and [SELENOP]; 5.1 vs. 3.5 mg/L, p = 0.001), while GPX3 activity was low and correlated inversely to SELENOP autoantibody concentrations. In renal cells in culture, antibodies to SELENOP inhibited Se uptake. Our results indicate an impairment of SELENOP-dependent Se transport by natural SELENOP autoantibodies, suggesting that the characterization of health risk from Se deficiency may need to include autoimmunity to SELENOP as additional biomarker of Se status.


2021 ◽  
Vol 65 (5) ◽  
pp. 447-453
Author(s):  
Aksana N. Mazilina ◽  
Anatoly V. Skalny ◽  
Valerii N. Rakitskii ◽  
Aleksander S. Rusanov ◽  
Lyubov N. Chernova ◽  
...  

Introduction. Due to the many physiological functions of Selenium (Se), its deficiency is associated with a broad spectrum of adverse health effects. This review aims to analyze epidemiological data on the relation of selenium status to public health and the possibility of selenium-containing drugs usage. Material and methods. Based on the literature search in Pubmed, The Cochrane Library, and Google Scholar, epidemiological data on the association between Se status and population health and effects of Se supplementation were analyzed. Results. Meta-analyses indexed in the Cochrane Library demonstrated a significant association between Se status and many pathologies. Specifically, it has been shown that subjects with physiologically high Se body burden are characterized by a 24-31% lower risk of cancer and 36% lower risk of cancer-related mortality. It is also notable that Se supplementation in human immunodeficiency virus-infected women reduced the risk of maternal diarrhoea and low birth mass in offspring. Moreover, Se supplementation in premature newborns and critically low mass newborns significantly decreased the risk of sepsis. Many extensive epidemiological studies also demonstrated the efficiency of improvement in the Se status concerning coronary heart disease and sepsis mortality risk. At the same time, constant monitoring of Se body burden is essential for assessing Se supplementation efficiency and prevention of adverse health effects of Se overload. It is also noted that Se status is considered as the determinant of the efficiency of prevention of cardiovascular diseases and cancer under Se supplementation. Conclusion. Given the high incidence of Se deficiency in Russia (24-45% depending on the region), assessment and improvement of Se status may be considered a valuable tool for population health management.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1521
Author(s):  
Jacqueline Roshelli Baker ◽  
Sushma Umesh ◽  
Mazda Jenab ◽  
Lutz Schomburg ◽  
Anne Tjønneland ◽  
...  

A higher selenium (Se) status has been shown to be associated with lower risk for colorectal cancer (CRC), but the importance of Se in survival after CRC diagnosis is not well studied. The associations of prediagnostic circulating Se status (as indicated by serum Se and selenoprotein P (SELENOP) measurements) with overall and CRC-specific mortality were estimated using multivariable Cox proportional hazards regression among 995 CRC cases (515 deaths, 396 from CRC) in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Se and SELENOP serum concentrations were measured on average 46 months before CRC diagnosis. Median follow-up time was 113 months. Participants with Se concentrations in the highest quintile (≥100 µg/L) had a multivariable-adjusted hazard ratio (HR) of 0.73 (95% CI: 0.52–1.02; Ptrend = 0.06) for CRC-specific mortality and 0.77 (95% CI: 0.57–1.03; Ptrend = 0.04) for overall mortality, compared with the lowest quintile (≤67.5 µg/L). Similarly, participants with SELENOP concentrations in the highest (≥5.07 mg/L) compared with the lowest quintile (≤3.53 mg/L) had HRs of 0.89 (95% CI: 0.64–1.24; Ptrend = 0.39) for CRC-specific mortality and 0.83 (95% CI: 0.62–1.11; Ptrend = 0.17) for overall mortality. Higher prediagnostic exposure to Se within an optimal concentration (100–150 µg/L) might be associated with improved survival among CRC patients, although our results were not statistically significant and additional studies are needed to confirm this potential association. Our findings may stimulate further research on selenium’s role in survival among CRC patients especially among those residing in geographic regions with suboptimal Se availability.


2021 ◽  
Vol 22 (16) ◽  
pp. 8532
Author(s):  
Lutz Schomburg

The trace element selenium (Se) is an essential part of the human diet; moreover, increased health risks have been observed with Se deficiency. A sufficiently high Se status is a prerequisite for adequate immune response, and preventable endemic diseases are known from areas with Se deficiency. Biomarkers of Se status decline strongly in pregnancy, severe illness, or COVID-19, reaching critically low concentrations. Notably, these conditions are associated with an increased risk for autoimmune disease (AID). Positive effects on the immune system are observed with Se supplementation in pregnancy, autoimmune thyroid disease, and recovery from severe illness. However, some studies reported null results; the database is small, and randomized trials are sparse. The current need for research on the link between AID and Se deficiency is particularly obvious for rheumatoid arthritis and type 1 diabetes mellitus. Despite these gaps in knowledge, it seems timely to realize that severe Se deficiency may trigger AID in susceptible subjects. Improved dietary choices or supplemental Se are efficient ways to avoid severe Se deficiency, thereby decreasing AID risk and improving disease course. A personalized approach is needed in clinics and during therapy, while population-wide measures should be considered for areas with habitual low Se intake. Finland has been adding Se to its food chain for more than 35 years—a wise and commendable decision, according to today’s knowledge. It is unfortunate that the health risks of Se deficiency are often neglected, while possible side effects of Se supplementation are exaggerated, leading to disregard for this safe and promising preventive and adjuvant treatment options. This is especially true in the follow-up situations of pregnancy, severe illness, or COVID-19, where massive Se deficiencies have developed and are associated with AID risk, long-lasting health impairments, and slow recovery.


Author(s):  
Halina B. Röllin ◽  
Kalavati Channa ◽  
Bukola Olutola ◽  
Jon Øyvind Odland

Selenium (Se) is an essential trace element and its deficiency in utero may affect fetus development and birth outcomes. The current study aimed to assess serum Se status at delivery and examine the possible association between Se levels and birth outcomes. The interaction of Se with selected essential and toxic elements as well as possible sex-dependent responses in utero were also evaluated. The negative association between Se levels and head circumference of neonates was evident in the total cohort (β = −0.164; p < 0.001) as well as in the pre-term and full-term cohorts. Significant positive correlations were found between maternal serum Se concentrations and zinc (Zn) and copper (Cu) in the total and regional cohorts. In the total cohort, the toxic elements lead (Pb) and arsenic (As) showed a negative correlation with Se levels, while mercury (Hg), aluminum (Al) and cadmium (Cd) showed a positive correlation. The study found a sex-dependent response in utero for Zn, Cu, Pb, Hg, and Al. The findings of the current study may inform reproductive health policy on Se status in South Africa and highlight the need for sensitive methods to measure Se intake during pregnancy and its complex interactions with other micronutrients and environmental pollutants.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jacqueline K. Evenson ◽  
Roger A. Sunde

We now know much about selenium (Se) incorporation into selenoproteins, and there is considerable interest in the optimum form of Se for supplementation and prevention of cancer. To study the flux of 75Se into selenoprotein, rats were fed 0 to 5 μg Se/g diet as selenite for 50–80 d and injected iv with 50 μCi of 75Se-labeled selenite, selenate, selenodiglutathione, selenomethionine, or selenobetaine at tracer levels (~0.5 μg Se). The rats were killed at various times and 75Se incorporation into selenoproteins was assessed by SDS/PAGE. These studies found that there is very rapid Se metabolism from this diverse set of selenocompounds to the common intermediate used for synthesis and incorporation of 75Se into the major selenoproteins in a variety of tissues. No selenocompound was uniquely or preferentially metabolized to provide Se for selenoprotein incorporation. Examination of the SDS/PAGE selenoprotein profiles, however, reveals that synthesis of selenoproteins is only part of the full Se metabolism story. The 75Se missing from the selenoprotein profiles, especially at early timepoints, is likely to be both low-MW and high-MW selenosugars and related precursors, as we recently found in livers of turkeys fed Se-adequate and high-Se diets. Differential metabolism of different selenocompounds into different selenosugar species may occur; these species may be involved in prevention of cancer or other diseases linked to Se status and may be associated with Se toxicity. Additional studies using HPLC-mass spectroscopy will likely be needed to fully flesh out the complete metabolism of selenium.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1898
Author(s):  
Julian Hackler ◽  
Raban Arved Heller ◽  
Qian Sun ◽  
Marco Schwarzer ◽  
Joachim Diegmann ◽  
...  

The trace element copper (Cu) is part of our nutrition and essentially needed for several cuproenzymes that control redox status and support the immune system. In blood, the ferroxidase ceruloplasmin (CP) accounts for the majority of circulating Cu and serves as transport protein. Both Cu and CP behave as positive, whereas serum selenium (Se) and its transporter selenoprotein P (SELENOP) behave as negative acute phase reactants. In view that coronavirus disease (COVID-19) causes systemic inflammation, we hypothesized that biomarkers of Cu and Se status are regulated inversely, in relation to disease severity and mortality risk. Serum samples from COVID-19 patients were analysed for Cu by total reflection X-ray fluorescence and CP was quantified by a validated sandwich ELISA. The two Cu biomarkers correlated positively in serum from patients with COVID-19 (R = 0.42, p < 0.001). Surviving patients showed higher mean serum Cu and CP concentrations in comparison to non-survivors ([mean+/-SEM], Cu; 1475.9+/-22.7 vs. 1317.9+/-43.9 µg/L; p < 0.001, CP; 547.2.5 +/- 19.5 vs. 438.8+/-32.9 mg/L, p = 0.086). In contrast to expectations, total serum Cu and Se concentrations displayed a positive linear correlation in the patient samples analysed (R = 0.23, p = 0.003). Serum CP and SELENOP levels were not interrelated. Applying receiver operating characteristics (ROC) curve analysis, the combination of Cu and SELENOP with age outperformed other combinations of parameters for predicting risk of death, yielding an AUC of 95.0%. We conclude that the alterations in serum biomarkers of Cu and Se status in COVID-19 are not compatible with a simple acute phase response, and that serum Cu and SELENOP levels contribute to a good prediction of survival. Adjuvant supplementation in patients with diagnostically proven deficits in Cu or Se may positively influence disease course, as both increase in survivors and are of crucial importance for the immune response and antioxidative defence systems.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1739
Author(s):  
Wenli Hu ◽  
Chong Zhao ◽  
Hongbo Hu ◽  
Shutao Yin

Selenium (Se) is an essential micronutrient for mammals, and its deficiency seriously threatens human health. A series of biofortification strategies have been developed to produce Se-enriched foods for combating Se deficiency. Although there have been some inconsistent results, extensive evidence has suggested that Se supplementation is beneficial for preventing and treating several chronic diseases. Understanding the association between Se and chronic diseases is essential for guiding clinical practice, developing effective public health policies, and ultimately counteracting health issues associated with Se deficiency. The current review will discuss the food sources of Se, biofortification strategies, metabolism and biological activities, clinical disorders and dietary reference intakes, as well as the relationship between Se and health outcomes, especially cardiovascular disease, diabetes, chronic inflammation, cancer, and fertility. Additionally, some concepts were proposed, there is a non-linear U-shaped dose-responsive relationship between Se status and health effects: subjects with a low baseline Se status can benefit from Se supplementation, while Se supplementation in populations with an adequate or high status may potentially increase the risk of some diseases. In addition, at supra-nutritional levels, methylated Se compounds exerted more promising cancer chemo-preventive efficacy in preclinical trials.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1527
Author(s):  
Xin Huang ◽  
Yu-Lan Dong ◽  
Tong Li ◽  
Wei Xiong ◽  
Xu Zhang ◽  
...  

Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.


Sign in / Sign up

Export Citation Format

Share Document