scholarly journals Applications of mesoporous silica materials in food – a review

2013 ◽  
Vol 31 (No. 2) ◽  
pp. 99-107 ◽  
Author(s):  
A. Bernardos ◽  
L. Kouřimská

Mesoporous silica materials have been developed for some applications in the health field. These solids are used for the controlled release of bioactive molecules, as catalysts in the synthesis of essential nutrients, as sensors to detect unhealthy products etc., with many applications in food technologies. By combining mesoporous silica materials with food, we can create healthier products, the products that improve our quality of life. The development of mesoporous materials applied to food could result in protecting bioactive molecules during their passage though the digestive system. For this reason, the controlled release of bioactive molecules is a very interesting topic for the discipline of food technology. The use of mesoporous silica supports as catalysts in the synthesis of nutrients and as sensors for the detection of unhealthy products, essential in food, is in great demand industrially for the manufacture of functional foods and films for food and industrial packaging. This review shows some examples of silica materials and their applications in food.  

2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Yongxiang Zhang ◽  
Xinmin Liu ◽  
Yizhong Lu ◽  
Jincai Wang ◽  
Tingfang Dong ◽  
...  

In this study, heparinized multifunctional mesoporous silica nanoparticles were successfully synthesized and characterized. The new material not only maintains intrinsic functions of bare magnetic and fluorescent mesoporous silica materials such as targeting, imaging, and sustained release of drugs, but also generates several novel activities such as the enhancement of biocompatibility, selective loading drugs, and dual loading of anticancer drug and bFGF, rendering it a promising candidate to be used as a multifunctional carrier. The strategy of combination of multifunctional mesoporous silica materials with bioactive molecules could be a new effective approach to improve their capabilities in the drug delivery.


2010 ◽  
Vol 21 (16) ◽  
pp. 165103 ◽  
Author(s):  
Zhen Guo ◽  
Yu Du ◽  
Xianbin Liu ◽  
Siu-Choon Ng ◽  
Yuan Chen ◽  
...  

2006 ◽  
Vol 179 (7) ◽  
pp. 2027-2035 ◽  
Author(s):  
Fengyu Qu ◽  
Guangshan Zhu ◽  
Huiming Lin ◽  
Weiwei Zhang ◽  
Jinyu Sun ◽  
...  

2009 ◽  
pp. 4481 ◽  
Author(s):  
Guoying Sun ◽  
Yaping Chang ◽  
Siheng Li ◽  
Qiuyu Li ◽  
Rui Xu ◽  
...  

2021 ◽  
Vol 125 (12) ◽  
pp. 3197-3207
Author(s):  
Johanna R. Bruckner ◽  
Jessica Bauhof ◽  
Jacqueline Gebhardt ◽  
Ann-Katrin Beurer ◽  
Yvonne Traa ◽  
...  

2011 ◽  
Vol 358 (1) ◽  
pp. 136-145 ◽  
Author(s):  
Bao-Lian Su ◽  
Nicolas Moniotte ◽  
Noan Nivarlet ◽  
Li-Hua Chen ◽  
Zheng-Yi Fu ◽  
...  

2014 ◽  
Vol 988 ◽  
pp. 23-26
Author(s):  
Ai Bing Chen ◽  
Yun Hong Yu ◽  
Yi Feng Yu ◽  
Hai Jun Lv ◽  
Ting Ting Xing ◽  
...  

A facile approach is employed for the preparation of hierarchically porous structures monolithic ordered macroporous-mesoporous silica materials (OMS) using the commercially available and cheap polyurethane (PU) foam as monolithic template, triblock copolymer P123 (EO20PO70EO20) as structure-directing agent and tetraethyl orthosilicate (TEOS) as silica source, then monolithic ordered macro porous-mesoporous carbon materials (OMC) is synthesized by using monolithic ordered macroporous-mesoporous silica materials as hard template and ionic liquids as the carbon source. The silica and carbon monoliths possess uniform pore sizes (3.74-3.84 nm) and ordered mesostructure.


Sign in / Sign up

Export Citation Format

Share Document