scholarly journals Determination of leaf rust resistance genes Lr10, Lr26 and Lr37 by molecular markers in wheat cultivars registered in the Czech Republic

2009 ◽  
Vol 45 (No. 2) ◽  
pp. 79-84 ◽  
Author(s):  
A. Hanzalová ◽  
T. Sumíková ◽  
P. Bartoš

Twenty-seven winter wheat cultivars registered in the Czech Republic were tested by molecular markers for the presence of Lr26 and Lr37, and twenty-eight cultivars for the presence of Lr10. Gene Lr37 was determined in eleven cultivars, gene Lr10 in ten cultivars and gene Lr26 in four cultivars. Eight cultivars had combinations of two Lr genes, one cultivar possessed all the three Lr genes. The results of marker analyses were compared with multipathotype analysis which confirmed the presence of Lr26 but did not enable the verification of the presence of Lr10 and Lr37. Seedling resistance was compared with resistance of the studied cultivars in the field.

2011 ◽  
Vol 40 (No. 2) ◽  
pp. 31-35 ◽  
Author(s):  
P. Bartoš ◽  
J. Ovesná ◽  
A. Hanzalová ◽  
J. Chrpová ◽  
V. Dumalasová ◽  
...  

The presence of a translocation from Aegilops ventricosa carrying the genes for rust resistance Yr17, Lr37 and Sr38 was analysed in recently registered, mostly western European wheat cultivars in the Czech Republic. By means of a PCR marker the presence of the translocation was determined in cvs. Bill, Clarus, Clever, Corsaire, Rapsodia, and in the Czech cv. Rheia. Novel are the data for cvs. Rapsodia, Clarus and Rheia. Infection tests indicated the presence of additional leaf rust resistance genes in cultivars with the translocation, except in cv. Rheia. Segregating progenies of six crosses between cv. Renan possessing Lr37and different cultivars susceptible to leaf rust were tested for the presence of the translocation with Yr17, Lr37 and Sr38 by an infection test as well as by a molecular marker. High coincidence between the results from infection tests and those by the marker has been proved.  


2011 ◽  
Vol 47 (No. 1) ◽  
pp. 10-16 ◽  
Author(s):  
A. Hanzalová ◽  
P. Bartoš

Reactions of winter triticale cultivars mostly from central Europe to recent and old leaf rust isolates were tested in the greenhouse. In one trial 20 cultivars were tested with 8 leaf rust isolates, collected recently from official wheat and triticale trials in the Czech Republic and Slovakia. In another trial 15 cultivars were tested with 6 old leaf rust isolates, used to identify leaf rust resistance genes in wheat. The cultivars Cando, Hortenso and Tricolor, registered in the Czech Republic, were resistant to the majority of the recent isolates. The Hungarian cultivar Tatra was resistant to all the recent isolates. The old leaf rust isolates were virulent only to a few of the triticale cultivars. Randomly selected isolates from wheat and triticale were tested on triticale cultivars and on Thatcher near isogenic lines with different Lr genes. On average, leaf rust isolates from triticale were virulent to a higher number of triticale cultivars than isolates collected from wheat and vice versa.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1484
Author(s):  
Alma Kokhmetova ◽  
Shynbolat Rsaliyev ◽  
Makpal Atishova ◽  
Madina Kumarbayeva ◽  
Angelina Malysheva ◽  
...  

Leaf rust, caused by Puccinia triticina (Ptr), is a significant disease of spring wheat spread in Kazakhstan. The development of resistant cultivars importantly requires the effective use of leaf rust resistance genes. This study aims to: (i) determine variation in Ptr population using races from the East Kazakhstan, Akmola, and Almaty regions of Kazakhstan; (ii) examine resistance during seedling and adult plant stages; and (iii) identify the sources of Lr resistance genes among the spring wheat collection using molecular markers. Analysis of a mixed population of Ptr identified 25 distinct pathotypes. Analysis of these pathotypes using 16 Thatcher lines that are near-isogenic for leaf rust resistance genes (Lr) showed different virulence patterns, ranging from least virulent “CJF/B” and “JCL/G” to highly virulent “TKT/Q”. Most of the pathotypes were avirulent to Lr9, Lr19, Lr24, and Lr25 and virulent to Lr1, Lr2a, Lr3ka, Lr11, and Lr30. The Ptr population in Kazakhstan is diverse, as indicated by the range of virulence observed in five different races analyzed in this study. The number of genotypes showed high levels of seedling resistance to each of the five Ptr races, thus confirming genotypic diversity. Two genotypes, Stepnaya 62 and Omskaya 37, were highly resistant to almost all five tested Ptr pathotypes. Stepnaya 62, Omskaya 37, Avangard, Kazakhstanskaya rannespelaya, and Kazakhstanskaya 25 were identified as the most stable genotypes for seedling resistance. However, most of the varieties from Kazakhstan were susceptible in the seedling stage. Molecular screening of these genotypes showed contrasting differences in the genes frequencies. Among the 30 entries, 22 carried leaf rust resistance gene Lr1, and two had Lr9 and Lr68. Lr10 and Lr28 were found in three and four cultivars, respectively. Lr19 was detected in Omskaya 37. Two single cultivars separately carried Lr26 and Lr34, while Lr37 was not detected in any genotypes within this study. Field evaluation demonstrated that the most frequent Lr1 gene is ineffective. Kazakhstanskaya 19 and Omskaya 37 had the highest number of resistance genes: three and four Lr genes, respectively. Two gene combinations (Lr1, Lr68) were detected in Erythrospermum 35 and Astana. The result obtained may assist breeders in incorporating effective Lr genes into new cultivars and developing cultivars resistant to leaf rust.


2015 ◽  
Vol 4 (2) ◽  
pp. 55-62
Author(s):  
Ashraf M.M. Abdelbacki ◽  
Reda I. Omara ◽  
Nor E.K. Soliman ◽  
Mohammed A. Najeeb

Leaf rust, caused by Puccinia triticina is a common and widespread disease of bread wheat (Triticum aestivum L.), in Egypt. Host resistance is the most economical, effective and ecologically sustainable method for controlling the disease. Molecular markers help to determine leaf rust resistance genes (Lr genes) that may be present in a large group of wheat germplasm. The objective of this study was to evaluate and detect leaf rust resistance genes in Egyptian wheat cultivars. Ten out of fifteen cultivars were resistance to leaf rust disease in four locations i.e., Dakahlia, Kafr el-Sheikh, Beheira and Sharqia during seasons 2011/2012 and 2012/2013. As for, using specific SSR primers proved that Lr19 was present in five cultivars i.e., Sakha-95, Gemmeiza-9, Gemmeiza-10, Misr-1 and Misr-2. Lr21. Lr24, Lr47, and Lr51 were detected in all tested cultivars. These genes should be taken into consideration in wheat breeding programs for successful rust resistance. Furthermore these materials can be used as a parent for plant breeders to add new effective resistance genes to their breeding materials because of the dynamic change of leaf rust races which can breakdown the resistance.


2019 ◽  
Vol 79 (01) ◽  
Author(s):  
T. L. Prakasha ◽  
S. Chand ◽  
A. N. Mishra ◽  
K. S. Solanki ◽  
J. B. Singh ◽  
...  

This study aimed to investigate the genetic basis of leafrust resistance in three bread wheat cultivars viz., MP 3288, HI 1418 and HI 784 which have been maintaining high levels of resistance to leaf rust since their release in 2011, 2000, and 1983, respectively. These cultivars also possess leaf tip necrosis phenotype. These were crossed with a susceptible bread wheat cultivar Lal Bahadur and also among themselves in non-reciprocal manner.The F1 , F2 and F3 populations were raised and the inheritance of leaf rust resistance was studied using prevalent and highly virulent Puccinia triticina pathotype 77-5 (121R63-1) during 2014- 17. These studies showed that the field (adult-plant) resistance of these cultivars is governed by two dominant genes each. Closely linked molecular markers L34DINT9F and L34PLUSR revealed the presence of non-race specific adult-plant leaf rust resistance gene Lr34 in all cultivars of present study. Absence of the other documented race nonspecific APR genes viz., Lr46, Lr67 and Lr68 was indicated in all the three test cultivars based on genotyping with closely linked molecular markers WMC44, CFD71 and csgs, respectively. The other dominant gene appears to be an allstage resistance gene since all the three cultivars displayed high levels of seedling resistance to the test pathotype. Stable resistance of these cultivars could be due to synergistic/additive or complementary effects resulting from the combination of Lr34 and the all-stage resistance gene.


Sign in / Sign up

Export Citation Format

Share Document