scholarly journals Application and limitations of growth models for silvicultural purposes in heterogeneously structured forest in Sweden

2013 ◽  
Vol 59 (No. 11) ◽  
pp. 458-473 ◽  
Author(s):  
L. Drössler ◽  
N. Fahlvik ◽  
B. Elfving

The paper addresses the problem of estimating future stand development in heterogeneously structured forests in Sweden; specifically, multi-layered spruce stands and mature pine stands with advanced spruce undergrowth. We first introduce various supporting concepts and models with their empirical databases, model validation and constraints. Secondly, Swedish single-tree growth functions designed for more heterogeneously structured forest are tested using data from inventory plots, a thinning experiment in an uneven-aged forest stand, and yield plots in pristine forest. Future growth of a managed, multi-layered forest was simulated and is compared with other selected functions. Simulation results, expected errors and time constraints are discussed. For most models, projected stand basal area growth deviated 10–20% from the observed growth in individual stands. In single stands, the deviation ranged from 0 to 60%. Validation periods were often 5–15 years, sometimes even more than 30 years. For Swedish single-tree basal area growth functions, on average, a 5% overestimate was found for heterogeneously structured forest across Sweden. Observed growth in a boreal single-tree selection forest was underestimated by 12.5% fifteen years after thinning from above.

2003 ◽  
Vol 79 (5) ◽  
pp. 898-905 ◽  
Author(s):  
Steve Bédard ◽  
Zoran Majcen

Eight experimental blocks were established in the southern part of Québec to determine the growth response of sugar maple (Acer saccharum) dominated stands after single tree selection cutting. Each block contained eight control plots (no cut) and eight cut plots. The intensity of removal varied between 21% and 32% and residual basal area was between 18.2 and 21 m2/ha. Ten year net annual basal area growth rates in cut plots (0.35 ± 0.04 m2/ha) were significantly higher (p = 0.0022) than in control plots (0.14 ± 0.06 m2/ha). The treatment particularly favoured diameter growth of stems between 10 and 30 cm in dbh, whose crowns were released by removing neighbouring trees. These results show that if the same net growth rate is maintained in the next decade most of the cut plots will reach their pre-cut basal area in about 20 years after cutting. Key words: northern hardwoods, selection cutting, uneven aged silviculture, basal area growth, diameter growth


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 249 ◽  
Author(s):  
José Riofrío ◽  
Miren del Río ◽  
Douglas Maguire ◽  
Felipe Bravo

Models that incorporate known species-mixing effects on tree growth are essential tools to properly design silvicultural guidelines for mixed-species stands. Here, we developed generalized height–diameter (h-d) and basal area growth models for mixed stands of two main forest species in Spain: Scots pine (Pinus sylvestris L.) and Maritime pine (Pinus pinaster Ait.). Mixed-effects models were fitted from plot measurement and tree rings data from 726 Scots pine and 693 Maritime pine trees from mixed and pure stands in the Northern Iberian Range in Spain, with the primary objective of representing interactions between the species where they are interspersed in mixtures of varying proportions. An independent dataset was used to test the performance of the h-d models against models previously fitted for monospecific stands of both species. Basal area increment models were evaluated using a 10-fold block cross-validation procedure. We found that species mixing had contrasting effects on the species in both models. In h-d models, the species-mixing proportion determined the effect of species interactions. Basal area growth models showed that interspecific competition was influential only for Maritime pine; however, these effects differed depending on the mode of competition. For Scots pine, tree growth was not restricted by interspecies competition. The combination of mixed-effect models and the inclusion of parameters expressing species-mixing enhanced estimates of tree height and basal area growth compared with the available models previously developed for pure stands. Although the species-mixing effects were successfully represented in the fitted models, additional model components for accurately simulating the stand dynamics of mixtures with Scots pine and Maritime pine and other species mixtures require similar model refinements. Upon the completion of analyses required for these model refinements, the degree of improvement in simulating growth in species mixtures, including the effects of different management options, can be evaluated.


1985 ◽  
Vol 15 (3) ◽  
pp. 577-585 ◽  
Author(s):  
Ariel E. Lugo ◽  
Julio Figueroa

The growth of kadam (Anthocephaluschinensis (Lam.) A. Rich. ex Walp.), a fast-growing Asiatic species, was studied under different soil and climatic conditions in Puerto Rico. Plantings included a 10-year-old line planting, a 12.5-year-old plantation, 12 localities with 20-year-old single tree plots, and 1 locality with four 52-year-old trees. Over 600 trees were measured in all. Growth rates were comparable to those of fast-growing species elsewhere in the tropics; e.g., the 12.5-year-old plantation had a volume growth of 27.8 m3•ha−1•year−1 (77% was merchantable wood), a basal area growth of 1.82 m2•ha−1•year−1, and a total aboveground biomass production of 11.5 t•ha−1•year−1. Trees grew well both in plantations and in lines under natural forest. The 20-year-old single tree plots averaged up to 1 m•year−1 in height growth and 53 cm2•year−1 in basal area growth. Highest rates were observed in localities with high annual rainfall (>2500 mm) and with phosphorus- and silt-rich soils of high bulk density and low pH. After 10 years, basal area growth of trees was fastest in volcanic deep clay locations, followed, in order, by trees on volcanic shallow loams, calcareous soils, and plutonic sandy loams. However, basal area growth during the first 5 years was fastest in the plutonic sandy loams and slowest in the calcareous soils. After 20 years, volcanic deep clay soils still supported the fastest basal area growth rate (about 100 cm2•year−1), while the other locations converged at about 30 cm2•year−1. Trees reached maximum height after 20 years (average, 19 m; maximum, 26.5 m). Kadam growth was limited by close spacings (below 2.5 × 2.5 m). Trees exhibited excellent form (ratio of diameter at 1.3 m to diameter at 4.9 m > 0.8). We found no evidence of pest or disease attacks on trees, but noted severe tapering and stem twist in localities having poor growth rates. Results underline the need for caution when making species adaptability assessments in the tropics with short-term (<10 years) data.


1996 ◽  
Vol 26 (2) ◽  
pp. 327-331 ◽  
Author(s):  
Paul A. Murphy ◽  
Michael G. Shelton

Tree basal area growth has been modeled as a combination of a potential growth function and a modifier function, in which the potential function is fitted separately from open-grown tree data or a subset of the data and the modifier function includes stand and site variables. We propose a modification of this by simultaneously fitting both a growth component and a modifier component. The growth component can be any function that approximates tree growth patterns, and the logistic function is chosen as the modifier component. This approach can be adapted to a variety of stand conditions, and its application is demonstrated using data from an uneven-aged loblolly pine (Pinustaeda L.) study located in Arkansas and Louisiana.


2016 ◽  
Vol 136 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Jérôme Perin ◽  
Hugues Claessens ◽  
Philippe Lejeune ◽  
Yves Brostaux ◽  
Jacques Hébert

2007 ◽  
Vol 9 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Hong-gang Sun ◽  
Jian-guo Zhang ◽  
Ai-guo Duan ◽  
Cai-yun He

2020 ◽  
Vol 26 (2) ◽  
Author(s):  
Alonso Barrios-Trilleras ◽  
Ana Milena López-Aguirre

Eucalyptus tereticornis is an important species used in reforestation programs in Colombia. Information on the dynamics and development of the E. tereticornis stands is required to improve management planning. This study compares nine basal area growth models, evaluating their goodness of fit and prediction, and describes their linkage to a thinning response model for E. tereticornis plantations. The evaluated models showed a good fit to the data, the R2adj ranged between 0.90 - 0.92 and 0.69 - 0.86 for the basal area projection and prediction models, respectively. The root of the mean square error (RMSE) ranged between 1.080 m2 ha-1 - 1.343 m2 ha-1 for basal area projection models and 1.671 m2 ha-1 - 2.206 m2 ha-1 for basal area prediction models. The selected basal area model for unthinned stands depends on the age, stand density, and dominant height. For the thinned stands, the basal area was predicted using a competition index that depends on the age and the dominant height of the stand. The competition index had an R2adj = 0.87, and a standard error of estimate of 0.031%. The system of equations presented a slight tendency to overestimate with a mean error of -0.14 m2 ha-1 and a RMSE of 0.696 m2 ha-1. This way, the developed models have the potential to be applied to unthinned and thinned stands with different ages, productivity, and planting densities. The developed models provide new tools to support forest management and research of the species growing in plantations.


1998 ◽  
Vol 22 (3) ◽  
pp. 184-192 ◽  
Author(s):  
Paul A. Murphy ◽  
David L. Graney

Abstract Models were developed for individual-tree basal area growth, survival, and total heights for different species of upland hardwoods in the Boston Mountains of north Arkansas. Data used were from 87 permanent plots located in an array of different sites and stand ages; the plots were thinned to different stocking levels and included unthinned controls. To test these three tree models, stand development for 5 and 10 yr were simulated in terms of stand basal area/ac, numbers of trees/ac, and quadratic mean diameter. Percent mean differences for the three variables indicated no serious biases. A long-term projection of 100 yr to test model reasonableness showed development that would be consistent with these stands. These equations provide forest managers the first upland hardwood individual-tree growth models specifically for this region. South. J. Appl. For. 22(3):184-192.


Sign in / Sign up

Export Citation Format

Share Document