scholarly journals Luxury transpiration of winter wheat and its responses to deficit irrigation in North China Plain

2018 ◽  
Vol 64 (No. 8) ◽  
pp. 361-366 ◽  
Author(s):  
Liang Yueping ◽  
Gao Yang ◽  
Wang Guangshuai ◽  
Si Zhuanyun ◽  
Shen Xiaojun ◽  
...  

Reducing crop luxury transpiration is an important step in improving water productivity; water shortage regions are potential hotspots for studying physiological water conservation. This study investigated the amount of luxury transpiration in winter wheat and its responses to different irrigation treatments in North China Plain. The results showed that luxury transpiration existed and increased with growth of winter wheat and after rainfall. In each sampling day, the amount of luxury transpiration under full irrigation was significantly higher than that under deficit irrigation. The average amount of luxury transpiration was 258.87 g/m<sup>2</sup> under full irrigation, and 125.18 g/m<sup>2</sup> under deficit irrigation during the experimental period. Although the amount of luxury transpiration was 2.09-fold higher under full irrigation than that in deficit irrigation, the water loss ratio due to luxury transpiration in deficit irrigation (8.13%) was significantly higher than that in full irrigation (6.75%). Furthermore, the ratio between luxury transpiration amount and crop daily transpiration was revealed in all sampling dates. Therefore, deficit irrigation should be generalized in the water shortage area, because it can save irrigation water and reduce the amount of luxury transpiration. Full irrigation should be carried out in the water abundant region mainly for higher production.

2014 ◽  
Vol 936 ◽  
pp. 2389-2395
Author(s):  
Bin Hu ◽  
Min Zhang

In order to investigate the optimal water-saving and high-efficient irrigation patterns of winter wheat in North China Plain, during 2010-2011 and 2011-2012 winter wheat growing seasons, 3 irrigation treatments were conducted, i.e., irrigated 120 mm only at jointing stage (T1), irrigated 120 mm only at heading stages (T2), and irrigated 60 mm each at jointing and heading stages (T3), respectively, to study the effect of deficit irrigation on root-shoot development and grain yield of winter wheat in North China Plain. The results showed that under the condition of irrigated 120 mm during the winter wheat growing season, the treatment which irrigated 60 mm each at jointing and heading stages, the leaf area index significantly (LSD, P<0.05) increased at milky stage, which was mainly due to increase the leaf area index at 0-20 and more than 60 cm above the ground surface. The 2 growing season results revealed that dry matter accumulation at maturity stage in T3 was significantly (LSD, P<0.05) higher than those in T1 and T2. Compared with T2, the root length density in T1 and T3 were significantly (LSD, P<0.05) higher below the ground surface 50 cm. The results indicated that irrigated 60 mm each at jointing and heading stages during the winter wheat growing seasons, grain yield was the highest, which could be attributed to significantly (LSD, P<0.05) increase the spike numbers. Under the condition of irrigated 120 mm during the winter wheat growing seasons in North China Plain, it is suggests that winter wheat should be irrigated 60 mm each at jointing and heading stages, to achieve reasonable water use efficiency and grain yield.


2013 ◽  
Vol 62 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Hai-Jun Liu ◽  
Yaohu Kang ◽  
Su-Mei Yao ◽  
Ze-Qiang Sun ◽  
Shi-Ping Liu ◽  
...  

2021 ◽  
Vol 256 ◽  
pp. 107063
Author(s):  
Ruiyun Zeng ◽  
Fengmei Yao ◽  
Sha Zhang ◽  
Shanshan Yang ◽  
Yun Bai ◽  
...  

2021 ◽  
Vol 67 (No. 4) ◽  
pp. 236-244
Author(s):  
Yuzhao Ma ◽  
Naikun Kuang ◽  
Shengzhe Hong ◽  
Fengli Jiao ◽  
Changyuan Liu ◽  
...  

Uneven distribution of precipitation and overexploitation of groundwater resources threatens the sustainability of agriculture in the North China Plain. Adoption of water deficit-tolerant winter wheat genotypes coupled with timely, adequate farming practice is crucial to enhance sustainable crop production and water productivity in the region. The present study aimed to evaluate water consumption patterns and water productivity of two winter wheat genotypes (Tainong-18 and Jimai-22), under no-tillage or conventional tillage, over a period of four consecutive cropping seasons. Under no-tillage, Tainong-18 showed the lowest soil moisture consumption before sowing in the 30–110 cm soil profile. Jimai-22 under conventional tillage and Tainong-18 under no-tillage showed the highest and lowest evapotranspiration across cropping seasons, respectively. Compared with conventional tillage, no-tillage reduced grain yield and water productivity of winter wheat, and the difference between them increased for grain yield (6.79, 11.99, 14.78, and 15.73%) and water productivity (0.99, 8.14, 12.18, and 13.30%) over the 2015–2016, 2016–2017, 2017–2018, and 2018–2019 cropping seasons, respectively. In contrast, Tainong-18 showed lower evapotranspiration and increased grain yield and water productivity compared with Jimai-22. Further, Tainong-18 showed a compensatory effect on the reduction of water productivity under no-tillage, compared with Jimai-22. Our conclusions indicate that the combination of no-tillage and water-efficient winter wheat genotypes is an effective strategy to offset the reduction in water productivity caused by no-tillage and thus maximise water productivity in the North China Plain.  


Sign in / Sign up

Export Citation Format

Share Document