scholarly journals Potassium leaching following silage maize on a productive sandy soil

2012 ◽  
Vol 58 (No. 12) ◽  
pp. 545-550 ◽  
Author(s):  
M. Kayser ◽  
M. Benke ◽  
J. Isselstein

Relatively little is known about potassium leaching losses following harvest of silage maize. While direct negative impacts on the environment are unlikely, losses of K with leaching need to be known for accurate balancing, especially on coarse textured soils, where K can be a critical element. In a four-year field experiment the effects of fertilizer forms (inorganic, cattle slurry and pig slurry) and four levels of N input (0, 80, 160, 240 kg N/ha) with corresponding amounts of K on the nutrient balances and leaching of K from silage maize grown on a sandy soil were investigated using suction cups. After four years, surplus of K from cattle slurry led to higher lactate-soluble K in the topsoil. Potassium leaching differed between years with different amounts of rainfall during winter. Annual leaching losses of K increased with N and K input and amounted to 38 kg K/ha, while fertilizer form had no significant effect. Losses of K increased with increasing N leaching (R<sup>2</sup> = 0.69). We conclude that in maize production on coarse textured soils and under conditions of high N leaching (86&ndash;152 kg N/ha), K leaching can be large (6&ndash;84 kg K/ha) and constitutes a relevant part of K balances (&ndash;84 to +127 kg K/ha). &nbsp; &nbsp;

2020 ◽  
Vol 80 (2) ◽  
pp. 133-146
Author(s):  
L Zhang ◽  
Z Zhang ◽  
J Cao ◽  
Y Luo ◽  
Z Li

Grain maize production exceeds the demand for grain maize in China. Methods for harvesting good-quality silage maize urgently need a theoretical basis and reference data in order to ensure its benefits to farmers. However, research on silage maize is limited, and very few studies have focused on its energetic value and quality. Here, we calibrated the CERES-Maize model for 24 cultivars with 93 field experiments and then performed a long-term (1980-2017) simulation to optimize genotype-environment-management (G-E-M) interactions in the 4 main agroecological zones across China. We found that CERES-Maize could reproduce the growth and development of maize well under various management and weather conditions with a phenology bias of <5 d and biomass relative root mean square error values of <5%. The simulated results showed that sowing long-growth-cycle cultivars approximately 10 d in advance could yield good-quality silage. The optimal sowing dates (from late May to July) and harvest dates (from early October to mid-November) gradually became later from north to south. A high-energy yield was expected when sowing at an early date and/or with late-maturing cultivars. We found that Northeast China and the North China Plain were potential silage maize growing areas, although these areas experienced a medium or even high frost risk. Southwestern maize experienced a low risk level, but the low soil fertility limited the attainable yield. The results of this paper provide information for designing an optimal G×E×M strategy to ensure silage maize production in the Chinese Maize Belt.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 868 ◽  
Author(s):  
Chengxin Zheng ◽  
Zhanyu Zhang ◽  
Yunyu Wu ◽  
Richwell Mwiya

The use of water-saving irrigation techniques has been encouraged in rice fields in response to irrigation water scarcity. Straw return is an important means of straw reuse. However, the environmental impact of this technology, e.g., nitrogen leaching loss, must be further explored. A two-year (2017–2018) experiment was conducted to investigate the vertical migration and leaching of nitrogen in paddy fields under water-saving and straw return conditions. Treatments included traditional flood irrigation (FI) and two water-saving irrigation regimes: rain-catching and controlled irrigation (RC-CI) and drought planting with straw mulching (DP-SM). RC-CI and DP-SM both significantly decreased the irrigation input compared with FI. RC-CI increased the rice yield by 8.23%~12.26%, while DP-SM decreased it by 8.98%~15.24% compared with FI. NH4+-N was the main form of the nitrogen leaching loss in percolation water, occupying 49.06%~50.97% of TN leaching losses. The NH4+-N and TN concentration showed a decreasing trend from top to bottom in soil water of 0~54 cm depth, while the concentration of NO3−-N presented the opposite behavior. The TN and NH4+-N concentrations in percolation water of RC-CI during most of the rice growth stage were the highest among treatments in both years, and DP-SM showed a trend of decreasing TN and NH4+-N concentrations. The NO3−-N concentrations in percolation water showed a regular pattern of DP-SM > RC-CI > FI during most of the rice growth stage. RC-CI and DP-SM remarkably reduced the amount of N leaching losses compared to FI as a result of the significant decrease of percolation water volumes. The tillering and jointing-booting stages were the two critical periods of N leaching (accounted for 74.85%~86.26% of N leaching losses). Great promotion potential of RC-CI and DP-SM exists in the lower reaches of the Yangtze River, China, and DP-SM needs to be further optimized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. W. McDowell ◽  
Z. P. Simpson ◽  
A. G. Ausseil ◽  
Z. Etheridge ◽  
R. Law

AbstractUnderstanding the lag time between land management and impacts on riverine nitrate–nitrogen (N) loads is critical to understand when action to mitigate nitrate–N leaching losses from the soil profile may start improving water quality. These lags occur due to leaching of nitrate–N through the subsurface (soil and groundwater). Actions to mitigate nitrate–N losses have been mandated in New Zealand policy to start showing improvements in water quality within five years. We estimated annual rates of nitrate–N leaching and annual nitrate–N loads for 77 river catchments from 1990 to 2018. Lag times between these losses and riverine loads were determined for 34 catchments but could not be determined in other catchments because they exhibited little change in nitrate–N leaching losses or loads. Lag times varied from 1 to 12 years according to factors like catchment size (Strahler stream order and altitude) and slope. For eight catchments where additional isotope and modelling data were available, the mean transit time for surface water at baseflow to pass through the catchment was on average 2.1 years less than, and never greater than, the mean lag time for nitrate–N, inferring our lag time estimates were robust. The median lag time for nitrate–N across the 34 catchments was 4.5 years, meaning that nearly half of these catchments wouldn’t exhibit decreases in nitrate–N because of practice change within the five years outlined in policy.


2020 ◽  
Vol 116 ◽  
pp. 126057 ◽  
Author(s):  
Ingeborg F. Pedersen ◽  
Gitte H. Rubæk ◽  
Tavs Nyord ◽  
Peter Sørensen
Keyword(s):  

2013 ◽  
Vol 29 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. J. Schröder ◽  
W. de Visser ◽  
F. B. T. Assinck ◽  
G. L. Velthof

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1530
Author(s):  
Aimé J. Messiga ◽  
Kathryn Dyck ◽  
Kiera Ronda ◽  
Kolden van Baar ◽  
Dennis Haak ◽  
...  

Nutrient leaching losses from horticultural production threaten the quality of groundwater and freshwater systems worldwide. The objectives of this study were to (a) assess the effects of annual applications of ammonium sulfate fertilizer through fertigation (FERT) and broadcast (BROAD) on nutrient leaching losses and (b) determine the links among chemical property changes in leachates and soil with berry yields after 9 and 11 years of blueberry production. The long-term blueberry site was established in 2008 using seven combinations of treatments including an unfertilized control (CONT) and three N fertilizer rates (100%, 150%, 200% of recommended rates) using BROAD and FERT methods. Nutrients concentrations (NO3−-N, NH4+-N and SO42−-S) and chemical properties (pH and electrical conductivity (EC)) of leachate, sawdust and soil and berries were assessed. All FERT methods resulted in concentrations of NO3−-N in the leachates > 100 mg L−1 with a maximum of 200 mg L−1 for FERT-200 during the growing season due to the easy transport of dissolved nutrients with the irrigation water. All BROAD methods resulted into concentrations of NO3−-N in the leachates >10 mg L−1 with a maximum of 35 mg L−1 for BROAD-200 between April and July, as well as between November and April, indicating two periods of NO3−-N leaching losses. The pattern observed with BROAD indicates that irrigation water in the summer and heavy rainfall in the winter contribute to NO3−-N leaching losses. Concentrations of NH4+-N in the leachates >1 mg L−1 were measured under FERT with a peak at 64.78 mg L−1 for FERT-200, during the period April to August, due to NH4+’s ability to quickly move through the sawdust layer with irrigation water. Principal component analysis linked berry yield decrease with ammonium sulfate applications above recommended rates (FERT and BROAD) and with changes in soil pH and EC. Our results demonstrated that excess fertilizer applications above recommended rates using FERT and BROAD can threaten the sustainability of blueberry production by enhancing nutrient leaching losses and reducing berry yield.


1998 ◽  
Vol 49 (4) ◽  
pp. 709-716 ◽  
Author(s):  
N. HESKETH ◽  
P. C. BROOKES ◽  
T. M. ADDISCOTT

Sign in / Sign up

Export Citation Format

Share Document