scholarly journals   Estimation of genetic parameters of reproductive traits in Zandi sheep using linear and threshold models

2012 ◽  
Vol 57 (No. 8) ◽  
pp. 382-388 ◽  
Author(s):  
H. Mohammadi ◽  
M. Moradi Shahrbabk ◽  
M. Vatankhah

Genetic parameters for reproductive traits in Zandi sheep were estimated from data records of 5025 lambs from 178 sires and 1967 dams collected between the years 1993 and 2010 using ASReml statistical package. Genetic parameters were estimated for four basic and two composite traits. Year of lambing and age of ewe were used as fixed effects. Due to repeated record of ewe animal direct genetic effects and permanent environmental effects were considered random. The heritability estimates for conception rate, number of lambs born, number of lambs born alive, number of lambs alive at weaning, number of lambs born per ewe exposed, and number of lambs weaned per ewe exposed were low with linear model – 0.05, 0.14, 0.12, 0.09, 0.05, and 0.04 respectively while the estimates resulting from threshold analysis were 0.11, 0.19, 0.14, 0.16, 0.12, and 0.11, respectively. Estimates of heritabilities for animal genetic and permanent environmental effects were low mainly due to the typical strong influence of environmental factors on reproductive traits. Estimates of repeatabilities for animal permanent environmental effects were low to medium by linear analysis, and medium by threshold analysis. These estimates of genetic parameters may provide a basis for deriving selection indexes for reproductive traits.  

2018 ◽  
Vol 63 (No. 6) ◽  
pp. 230-236 ◽  
Author(s):  
J.O. Rosa ◽  
G.C. Venturini ◽  
T.C.S. Chud ◽  
B.C. Pires ◽  
M.E. Buzanskas ◽  
...  

This study estimated the genetic parameters for reproductive and performance traits and determined which ones can be used as selection criteria for egg production in laying hens using the Bayesian inference. The data of 1894 animals from three generations of White Leghorn laying hens were analyzed for fertility (FERT), hatchability (HATC), and birth rate measurements at 60 weeks of age (BIRTH), body weight at 16 and 60 weeks of age (BW16 and BW60), age at sexual maturity (ASM), egg height/width ratio, weight, and density at 28, 36, and 40 weeks of age (RHW28, RHW36, RHW40, WEGG28, WEGG36, WEGG40, DENS28, DENS36, and DENS40, respectively) traits. The genetic parameters were estimated by the Bayesian inference method of multi-trait animal model. The model included the additive and residual genetic random effects and the fixed effects of generation. The a posteriori mean distributions of the heritability estimates for reproductive traits ranged from 0.14 ± 0.003 (HATC) to 0.22 ± 0.005 (FERT) and performance from 0.07 ± 0.001 (RHW28) to 0.42 ± 0.001 (WEGG40). The a posteriori mean distributions of the genetic correlation between reproductive traits ranged from 0.18 ± 0.026 (FERT and HACT) to 0.79 ± 0.007 (FERT and BIRTH) and those related to performance ranged from –0.49 ± 0.001 (WEGG36 and DENS36) to 0.75 ± 0.003 (DENS28 and DENS36). Reproductive and performance traits showed enough additive genetic variability to respond to selection, except for RHW28. This trait alone would have little impact on the genetic gain because environmental factors would have a higher impact compared to those from the additive genetic factors. Based on the results of this study, the selection applied on the BIRTH trait can be indicated to improve FERT and HATC of eggs. Furthermore, the use of the WEGG40 could improve egg quality in this population.


2012 ◽  
Vol 55 (2) ◽  
pp. 105-112
Author(s):  
L. Vostrý ◽  
K. Mach ◽  
J. Přibyl

Abstract. The objective of this paper was to select a suitable data subset and statistical model for the estimation of genetic parameters for 36 traits of the linear type in 977 Old Kladruber horses. Two subsets were tested to identify a suitable subset for analysis. One subset included repeated evaluation of certain individuals, whereas the other did not. The most suitable subset included repeated evaluation (n=1 390). The selection of a suitable model was made from 4 candidate models. These models comprised a number of random effects (direct individual effect and animal permanent environmental effect of the animal) and a number of fixed effects (colour variant, stud, colour variant × stud interaction, sex, age at description, year of birth, year of description). The model was selected based on the Akaike information criterion (AIC, Akaike 1974), residual variance and heritability coefficient. The model that included colour variant, stud, colour variant × stud interaction, sex, age at description, and year of description as fixed effects and direct individual and animal permanent environment as random effects was the most suitable model for the estimation of genetic parameters and for the subsequent estimation of breeding values.


2009 ◽  
Vol 89 (2) ◽  
pp. 215-218 ◽  
Author(s):  
A. Wolc ◽  
G. Torzynski ◽  
T. Szwaczkowski

Reproductive efficiency is an important issue in horse breeding. However, almost no estimates of genetic parameters of reproductive traits in horses can be found in the literature. The objective of the study was to estimate heritability and genetic trends of foaling rate and number of reproductive seasons in Warmblood horses. The records of 3965 mares from six studs were analyzed. Mares were on average kept for 7.3 reproductive seasons with a foaling rate of 66%. Models included fixed effects of stud, period of birth, breed and random additive genetic effect. Heritability estimates were 0.12 for foaling rate and 0.17 for number of reproductive seasons. Key words: Heritability, reproduction, horse


2007 ◽  
Vol 50 (6) ◽  
pp. 562-574
Author(s):  
L. Vostrý ◽  
J. Přibyl ◽  
Z. Veselá ◽  
V. Jakubec

Abstract. The objective of this paper was to select a suitable data subset and statistical model for the estimation of genetic parameters for weaning weight of beef cattle in the Czech Republic. Nine subsets were tested for the selection of a suitable subset. The subsets differed from each other in the limit of sampling criteria. The most suitable subset satisfied these conditions: at least 5 individuals per each sire, 5 individuals per HYS (herd, year, season), 2 sires per HYS, and individuals per dams that have at least one half-sister and two offspring (n = 4 806). The selection of a suitable model was carried out from 10 models. These models comprised some of the random effects: direct genetic effect, maternal genetic effect, permanent maternal environment effect, HYS, sire × herd or sire × year interaction, and some of the fixed effects: dam’s age, sex (young bull, heifer × single, twin born), HYS, year, herd. The direct heritability (h2a) ranged from 0.06 to 0.17, of maternal heritability (h2m) from 0.03 to 0.06. The genetic correlations between the direct and maternal effect (ram) were in the range of –0.15 –0.42.


2009 ◽  
Vol 21 (1) ◽  
pp. 169 ◽  
Author(s):  
F. A. Di Croce ◽  
A. M. Saxton ◽  
N. R. Rohrbach ◽  
F. N. Schrick

Genetic selection has made tremendous progress on economically important traits in the beef industry. Most of the progress has been from quantitative genetics through use of expected progeny differences (EPD). These values allow prediction of differences in progeny of a sire compared to progeny of other sires. Development of EPD for male and female reproductive traits has largely been ignored because of low heritability of reproductive traits, even though reproduction plays a vital role in the economics of beef operations. Therefore, continued research in the area of genetic selection for fertility is becoming increasingly important. Critical limiting factors for animal breeding programs using MOET nucleus schemes include variability in superovulatory response of donor animals and resulting pregnancy of transferred embryos. Thus, the overall objective of this research was to develop genetic parameters associated with MOET to assist producers in identifying animals with greater genetic merit for these protocols. Records were examined from a large-scale MOET system in beef cattle that contained data only for cows in which at least one transferable embryo was obtained. Data on these animals were extracted and analyzed on 10 425 transferred embryos (2900 collections) from 611 donor animals (Angus, Brangus, and Charolais) utilizing semen from 215 bulls. Phenotypic traits examined included pregnancy status of the recipient following transfer (ET-preg; determined by rectal palpation at 60 days post-transfer and/or confirmed calving date of recipient), number of transferable embryos per collection (ET-trans), and number of unfertilized ova at collection (ET-UFO). Basic statistical analysis and pedigree/trait files were developed using procedures in SAS (SAS Institute, Cary, NC). Genetic parameters were estimated for a single-trait animal model using restricted maximum likelihood (REML) procedures in Wombat (Meyer K 2007 Zhejiang Uni. Science B 8, 815–821). Wombat also computed EPD and standard errors for each trait evaluated. The model included fixed effects of year as well as random animal and residual effects. The EPD for ET-preg ranged from –6.1 to 4.4% (SE = 2.2 to 4.2) for semen sires (sires of the transferred embryos) and –5.3 to 3.8% (SE = 3.2 to 4.2) for donor animals. Additionally, the heritability estimated for ET-preg was 0.03. Heritability estimated for ET-trans was 0.00, indicating minute genetic variation and thus, EPD were not presented. Heritability estimated for ET-UFO was 0.05 with EPD values (deviation of the number of UFO from the mean) ranging from –0.6 to 0.8 (SE = 0.3 to 0.6) for semen sires and –0.4 to 1.1 (SE = 0.5 to 0.6) for donor cows. As previously shown for reproductive traits, heritability of ET-preg, ET-trans, and ET-UFO was low. Genetic improvement in fertility by selection on embryo transfer traits is possible, but progress would be slow. Further studies are underway on a larger dataset to refine these estimates and to examine repeatability.


Sign in / Sign up

Export Citation Format

Share Document