scholarly journals Zinc fertilization alters flour protein composition of winter wheat genotypes varying in gluten content

2016 ◽  
Vol 61 (No. 5) ◽  
pp. 195-200 ◽  
Author(s):  
Liu HE ◽  
Wang QY ◽  
Z. Rengel ◽  
P. Zhao
2008 ◽  
Vol 47 (3) ◽  
pp. 407-416 ◽  
Author(s):  
C. Saint Pierre ◽  
C.J. Peterson ◽  
A.S. Ross ◽  
J.B. Ohm ◽  
M.C. Verhoeven ◽  
...  

1995 ◽  
Vol 22 (1) ◽  
pp. 45-51 ◽  
Author(s):  
R.A. Graybosch ◽  
C.J. Peterson ◽  
P.S. Baenziger ◽  
D.R. Shelton

2012 ◽  
pp. 135-141
Author(s):  
Éva Szabó

Nowadays, due to the climate change, it is becoming increasingly important in the occasionally extreme years that the yield and the qualityparameters of a given winter wheat variety should not fluctuate at all or only slightly under similar agrotechnical conditions as a result of the year effect. In four years (2005–2008) we studied the changes in the wet gluten content, gluten speading and protein content of five wheat genotypes at six fertilization levels.In the control, it can be observed that the year had a significant effect on the wet gluten content, the protein content of the flour and gluten speading, therefore, a great fluctuation was detected in these qualities of the varieties in the four studied years. At the optimum fertilization levels (N120-150+PK), the varieties Sixtus, Saturus and Lupus showed a much lower fluctuation and more stable values were measured. The most stable variety in the control treatment was Mv Mazurka for all the three quality parameters, while at the optimum fertilization level (N120+PK), the most stable results were obtained for the variety Sixtus as an average of the four years.When studying the results using Kang’s method for stability analysis, it can be stated that the most stable values of wet gluten content were obtained at the fertilization level of N120+PK under a variable year effect, the varieties gave also the best gluten content values at this level. The most stable protein content values of flour were obtained at the fertilization level of N60+PK. The results showed that the fluctuation of quality parameters as a result of the changing years differed between the different winter wheat varieties due to their differing genotypes, but this fluctuation could be reduced or minimized by a proper fertilization. 


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shamseldeen Eltaher ◽  
P. Stephen Baenziger ◽  
Vikas Belamkar ◽  
Hamdy A. Emara ◽  
Ahmed A. Nower ◽  
...  

Abstract Background Improving grain yield in cereals especially in wheat is a main objective for plant breeders. One of the main constrains for improving this trait is the G × E interaction (GEI) which affects the performance of wheat genotypes in different environments. Selecting high yielding genotypes that can be used for a target set of environments is needed. Phenotypic selection can be misleading due to the environmental conditions. Incorporating information from phenotypic and genomic analyses can be useful in selecting the higher yielding genotypes for a group of environments. Results A set of 270 F3:6 wheat genotypes in the Nebraska winter wheat breeding program was tested for grain yield in nine environments. High genetic variation for grain yield was found among the genotypes. G × E interaction was also highly significant. The highest yielding genotype differed in each environment. The correlation for grain yield among the nine environments was low (0 to 0.43). Genome-wide association study revealed 70 marker traits association (MTAs) associated with increased grain yield. The analysis of linkage disequilibrium revealed 16 genomic regions with a highly significant linkage disequilibrium (LD). The candidate parents’ genotypes for improving grain yield in a group of environments were selected based on three criteria; number of alleles associated with increased grain yield in each selected genotype, genetic distance among the selected genotypes, and number of different alleles between each two selected parents. Conclusion Although G × E interaction was present, the advances in DNA technology provided very useful tools and analyzes. Such features helped to genetically select the highest yielding genotypes that can be used to cross grain production in a group of environments.


Genetika ◽  
2007 ◽  
Vol 39 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Veselinka Zecevic ◽  
Desimir Knezevic ◽  
Danica Micanovic

Ten winter wheat cultivars created in Small Grains Research Centre of Kragujevac (KG-56, Srbijanka, Studenica, Takovcanka, KG-56S, KG?100, Toplica, Levcanka, Gruza, and Tara) were grown at experimental field during four years. Variability of bread-making quality properties (sedimentation value, gluten content and quality, and rheological flour and dough properties) was investigated. The sedimentation value was determined by Zeleny method, gluten content by standard method, and rheological flour and dough properties by Farinograph. Quality components depended significantly of genotype and environment factors. Obtained results have shown that the highest value of sedimentation in average was at KG-56S cultivar (61.8ml). Sedimentation in all investigated cultivars was at the level of the first quality class. Wet gluten are characterized by good physical properties, and on average ranged from 25.6% (KG-100) to 36.3% (Gruza). Wheat technological quality depended predominantly of genetic potential of cultivar, and it was on the level of A2-B2 quality group. The highest impact of phenotypic variance belonged to genotype for sedimentation value, wet gluten content and rheological flour and dough properties, while for water absorption belonged to genotype-year interaction.


Author(s):  
V. D. Orekhivskyi ◽  
◽  
A. I. Kryvenko ◽  
S. V. Pochkolina ◽  
◽  
...  

The article investigates the influence of the application of different systems of basic tillage on the quality of winter wheat grain in short crop rotations of the Southern Steppe of Ukraine. It is established that the grain quality of winter wheat in the Southern Steppe of Ukraine is mainly determined by the genetic characteristics of the variety, but also largely depends on the conditions and technologies of cultivation. In winter wheat grain, which is used for food purposes, reserve proteins are important, which in winter wheat determine the baking properties of flour. In drought conditions, when the yield of winter wheat decreases, the protein content in its grain tends to increase. In wet years, on the contrary, there is a reverse pattern. According to experimental studies, wheat varieties have a negative correlation between grain protein content and yield. It is established that during 2016–2020 research shows almost the same pattern of action of different predecessors and systems of basic tillage on the formation of grain quality of winter wheat in arid conditions. It was found that, on average, according to all variants of research, only with the use of the system of tillage-free tillage received grain of winter wheat with a protein content of 12,5%, which met the requirements of the 2nd class. It is recorded that on average over five years of research on all tillage systems, grain of winter wheat with gluten content was obtained, the quality of which corresponded to the 3rd class. Different tillage systems caused a slight impact on the gluten content, which ranged from 20,6% to 21,1%. It is determined that the precursors have a certain effect on the protein content in the grain of winter wheat. The analysis of qualitative indicators showed that on average in five years of research, when growing winter wheat after a pair of black and a pair of green wheat with winter vetch, grain was formed, which in terms of protein content corresponded to the 2nd quality class. More protein was accumulated in winter wheat grain after a pair of black, which was 12,9%. After peas for grain, as well as a pair of green with a mixture of white mustard and peas, received a grain of winter wheat, which was the 3rd quality class. It was found that on average in five years of research, all variants of winter wheat were grown with gluten content, which met the requirements of the 3rd class. Black vapor and green vapor with winter veneer caused the accumulation of gluten at almost the same level with a small increase in the version with winter vetch up to 21,8%. The lowest level of gluten was obtained in the grain of winter wheat after peas per grain, which was 19,7%. In all variants of the experiment, sidereal steam with winter tillage and the use of tillage-free tillage had the best effect on the growth of winter wheat grain quality indicators. The grain of winter wheat was mainly formed in terms of quality, which allows it to be used for food purposes – mainly in the flour-milling and baking industries, as well as for export. It is established that it is important to further study the quality of winter wheat grain and other cereals in short crop rotations of the arid Southern Steppe of Ukraine, especially in climate change.


2013 ◽  
Vol 55 (1) ◽  
pp. 233-246
Author(s):  
Ewa Mirzwa-Mróz ◽  
Czesław Zamorski

The response of Polish winter wheat genotypes to <i>M.graminicola</i> (preliminary experiments and cultivar collections) was observed in different regions of Poland. Observations were carried out in 1995-1999. The winter wheat genotypes showed a broad spectrum of reaction to this pathogen. Between 1997 and 1999 the highest degree of infection on winter wheat breeding lines was noted in Kończewice. During this time no genotypes free from infection were observed (preliminary breeding experiments). Cultivars with no symptoms of <i>Septoria tritici</i> blotch (Leszczyńska Wczesna and Żelazna) were found among old genotypes in Słupia Wielka only in earlier experiments (1995-1996). In the years 1997-1999 the winter wheat cultivars were classified into groups on the basis of their response to the pathogen. The degree of infection for the majority cultivars was quite high.


Sign in / Sign up

Export Citation Format

Share Document