scholarly journals Accuracy of Structure from Motion models in comparison with terrestrial laser scanner for the analysis of DBH and height influence on error behaviour

2016 ◽  
Vol 62 (No. 8) ◽  
pp. 357-365 ◽  
Author(s):  
D. Panagiotidis ◽  
P. Surový ◽  
K. Kuželka
2020 ◽  
pp. e095
Author(s):  
José Antonio Benavides López ◽  
José Antonio Barrera Vera

Este artículo hace un análisis comparado de los nuevos sistemas de mapeo móvil (MMS) basados en la tecnología SLAM (Simultaneous Localization and Mapping) respecto de sistemas de registro gráfico ya consolidados como el escaneado TLS (Terrestrial Laser Scanner), la fotogrametría multi-imagen SFM (Structure from Motion), aportando novedades de carácter metodológico y utilizando como elemento de análisis el tholo de El Romeral, singular construcción prehistórica perteneciente al conjunto dolménico de Antequera. El experimento ha servido para analizar factores tan importantes como precisión geométrica, tiempos de captura y procesamiento, viabilidad económica o calidad de la documentación gráfica obtenida. La facilidad y rapidez que aportan las tecnologías de mapeo móvil simultáneo permiten una mejor y más completa documentación gráfica del patrimonio arquitectónico y arqueológico, incluso en aquellos lugares que se consideran inviables para el resto de tecnologías. La evaluación del dispositivo MMS sobre el tholo de El Romeral nos ha aportado una precisión geométrica similar a los otros sistemas de captura, pero la falta de textura de estas nubes de puntos impide el análisis paramental de las estructuras.


Author(s):  
Nikolay Lugovoy ◽  
Nikolay Lugovoy ◽  
Askar Ilyasov ◽  
Askar Ilyasov ◽  
Elena Pronina ◽  
...  

The paper describes application of the terrestrial laser scanner for investigation of coastal dynamics of the Svetlogorskaya Bay, Baltic Sea. Methods of investigation and results of surveys repeated over the two consecutive years for quantification of coastal erosion and slope processes within the coastal zone are presented.


2020 ◽  
Author(s):  
Collin Megee ◽  
◽  
Michael O'Neal ◽  
Joseph Clemens ◽  
Erica McMaster ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2494
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

T-splines have recently been introduced to represent objects of arbitrary shapes using a smaller number of control points than the conventional non-uniform rational B-splines (NURBS) or B-spline representatizons in computer-aided design, computer graphics and reverse engineering. They are flexible in representing complex surface shapes and economic in terms of parameters as they enable local refinement. This property is a great advantage when dense, scattered and noisy point clouds are approximated using least squares fitting, such as those from a terrestrial laser scanner (TLS). Unfortunately, when it comes to assessing the goodness of fit of the surface approximation with a real dataset, only a noisy point cloud can be approximated: (i) a low root mean squared error (RMSE) can be linked with an overfitting, i.e., a fitting of the noise, and should be correspondingly avoided, and (ii) a high RMSE is synonymous with a lack of details. To address the challenge of judging the approximation, the reference surface should be entirely known: this can be solved by printing a mathematically defined T-splines reference surface in three dimensions (3D) and modeling the artefacts induced by the 3D printing. Once scanned under different configurations, it is possible to assess the goodness of fit of the approximation for a noisy and potentially gappy point cloud and compare it with the traditional but less flexible NURBS. The advantages of T-splines local refinement open the door for further applications within a geodetic context such as rigorous statistical testing of deformation. Two different scans from a slightly deformed object were approximated; we found that more than 40% of the computational time could be saved without affecting the goodness of fit of the surface approximation by using the same mesh for the two epochs.


2020 ◽  
Vol 3 (1) ◽  
pp. 93
Author(s):  
Iulian Constantin Dănilă

Short rotation forestry (SRF) provides an important supply of biomass for investors in this area. In the NE (North-East) part of Romania at the present time are installed over 800 Ha of this kind of crops. The SRF enjoys the support through environmental policies, in relation to climate change and the provisions of the Kyoto Protocol to reduce the concentration of CO2 in the atmosphere. A precise estimate of biomass production is necessary for the sustainable planning of forest resources and for the exchange of energy in ecosystems. The use of the terrestrial laser scanner (TLS) in estimating the production of above ground wood biomass (AGWB) of short rotation forestry (SRF) brings an important technological leap among indirect (non-destructive) methods. TLS technology is justified when destructive methods become difficult to implement, and allometric equations do not provide accurate information. The main purpose of the research is to estimate the biomass productivity on tree parts in short rotation forestry with TLS technology. Measuring the hybrid poplars crops by TLS may have the following consequences: (1) Higher accuracy of the estimate of biomass production in the SRF; (2) cost and time effective measurements over the biomass of tree parts; (3) new and validated allometric equations for SRF in NE Romania; (4) solid instrument for industry to estimate biomass. TLS technology gives accurate estimates for DBH, tree height and location, as much as the volume on segments, commercial volume or crown volume can be determined. The accuracy of these values depends on the original scan data and their co-registration. The research will contribute to the development of knowledge in the field of hybrid crops.


Sign in / Sign up

Export Citation Format

Share Document