scholarly journals Mycobiota of the pelagic zone of Odessa region in the northwestern Black Sea

Author(s):  
Nadezda I. Kopytina ◽  

Mycobiota of the marine area of Odessa region was studied (30°70′00′′-31°00′00′′N, 46°23′00′′-46°60′00′′E) (See Fig. 1). Hydrological and hydrochemical regimes of the marine area of Odessa region in the northwestern Black Sea are affected by the discharge of the Dnieper (93.4%) and the Southern Bug (5.7%) rivers, the permanent anthropogenic discharges of the cities of Odessa, Chernomorsk (Ilyichyovsk), Yuzhnyi and their ports, shipping, dredging, and the open sea. The aim of this work was to study the species composition, the number of colony forming units (CFU) and the dynamics of the spatiotemporal distribution of reared microfungi as a function of abiotic factors and the trophic level of seawater in this area. Water samples were taken in summer and autumn 2008-2012 in the surface (1 m depth) and bottom (7-24 m depth) layers. The samples were taken, at least, in three replicates. The results of processing 258 samples from 22 stations were analyzed. The effects of environmental factors (water temperature, salinity, dissolved oxygen, five-day biochemical oxygen demand, petroleum hydrocarbons, dissolved metals Cu, Zn, Ni, Cd and suspended particulate matter) were studied in 140 samples (See Table 1). Micromycetes were isolated on Czapek’s medium prepared in sea water. 1 ml of sample water was added to a Petri dish and filled with medium cooled to approximately 36-40 °C. To suppress the growth of bacteria, 0.03% chloramphenicol was added to the medium (by volume of the medium). Cultivation was carried out at a temperature of 18-20 °С for 2-8 weeks. Micromycetes were identified by morphological and cultural characteristics according to Vera Bilay and Eleonora Koval’ (1988) and GS De Hooh ea tl. (2000). Nomenclature, and taxonomy of fungi correspond to The Index Fungorum database. The ecological analysis of mycocomplexes was carried out according to: species composition, the number of species in complexes, frequency of occurrence of a species and the number of colony-forming units (CFU / L). In this research, 50 fungal species of 19 genera, 14 families, 9 orders, 4 classes of the division Ascomycota were revealed. Fungal taxa from Odessa region were grouped into families. The family Aspergillaceae included the genera Aspergillus, Penicillium and Talaromyces (27 species); the family Pleosporaceae included the genera Alternaria and Stemphylium (8); and there were 3 species of the genus Cladosporium from the family Cladosporiaceae. In total, 76.0% of species found were from the three families (See Table 2). Using Average Taxonomic Distinctness index, AvTD (Δ+), and Variation in Taxonomic Distinctness index, VarTD (Λ+), features of the taxonomic diversity of mycocomplexes were revealed. These indices were calculated from a matrix of micromycete species from the region under study combined with the fungi list (master list, 219 species) of the Black Sea pelagic zone. In the analysis, the taxonomy levels from Species to Kingdom were included. For the indices Δ+ and Λ+, 95% probability funnel graphs were plotted, and their mean expected values were calculated for mycobiota of the region under study and for mycocomplexes from each station. It was found out that the mean expected values of the index Δ+ for mycobiota of the marine area of Odessa region and the stations are considerably lower, and index Λ+ values are higher than those for the sea as a whole (See Fig. 2 and 3). According to literature sources, no significant seasonal and inter-annual changes in the trophic status of the region occurred in 1992-2010. It was transitional between mesotrophic and eutrophic. The long-term mean TRIX value was 5.3 (4-5: medium trophic level; 5-6: high trophic level and poor water quality). In the species composition and numerical structure of mycocomplexes of the mesotrophic and eutrophic zones, no significant differences were detected. Over the entire period of this research, a relatively uniform distribution of the mean abundance of fungi over the area and depth was noted (See Table 3). No significant correlation was found between abiotic parameters under study and micromycete abundance over the horizons, seasons, sampling dates, location of stations, as well as mesotrophic and eutrophic zones. In the region, 44% of fungi-indicators of different kinds of pollution were registered. In the areas of stormwater runoff and wastewater treatment plant discharges, the indicator value (IndVal) was the largest for melanin-containing fungi Cladosporium cladosporioides (28.3%), Alternaria alternata (17.5%), and Aspergillus niger (12.3%), which are resistant to several adverse environmental factors. In the eutrophic zone, large values of the indices were found in Aspergillus clavatus (21,2%), Penicillium expansum (17,7%), Penicillium citrinum (16,1%), Al. tenuissima (12,5%), and in A. fumigatus (60%), Al. alternata (40%) and A. niger (35,7%) in places of local oil pollution. It is established that in the entire marine area of Odessa region, the formed mycocomplexes have a high similarity in species and numerical structure, and therefore, they can be considered as a single community.

Author(s):  
Puji Rahayu ◽  
Annawaty Annawaty

Labobo isle is one of the satellite isle located around the mainland of Sulawesi Island. This study aims to determine the species composition of freshwater shrimp in the Batambean Stream located on Labobo Island, Banggai Laut, Central Sulawesi, Indonesia. A purposive sampling method based on the habitat of freshwater shrimps was applied to collect the shrimps. Measurement of abiotic environmental factors is carried out before samples collection. Furthermore, freshwater shrimp are collected using tray net and hand net. Collected specimens were preserved in alcohol 96%. The specimen wasidentified at the Laboratory of Animal Biosystematics and Evolution, Department of Biology, Faculty of Sciences, Tadulako University. The composition of freshwater shrimp species in the Batambean Stream consists of four species, namely Macrobrachium equidens, M. australe, and M. latidactylus and Caridina gracilipes. The first three species belong to the family Palaemonidae while the latter species is a member of the family Atyidae. The brief description and conservation status of each species  were also provided


2021 ◽  
Vol 29 (4) ◽  
pp. 345-353
Author(s):  
N. I. Kopytina ◽  
E. A. Bocharova

Fungi are the most active biodeteriorators of natural and man-made materials. The article presents generalizations of the studies (2001–2019) of communities of microscopic fungi within biofilms on various substrates: shells of live Mytilus (Mytilus galloprovincialis, 670 specimens) and Ostreidae (Crassostrea gigas, 90 specimens), fragments of driftwood (over 7,000), stones (40), concrete of hydrotechnical constructions along the shoreline (80) and wood between concrete blocks in constructions on the shores (80). The studies were carried out in Odessa Oblast, the coastal zone of Sevastopol and open area of the Black Sea. There were identified 123 species of micromycetes, belonging to 65 genera, 33 families, 21 orders, 10 classes, 4 divisions, 2 kingdoms: Fungi and Chromista (fungi-like organisms). The Chromista kingdom was represented by 1 species – Ostracoblabe implexa, on shells of C. gigas. The number of species of micromycetes on various substrates varied 23 (wood between concrete blocks of hydrotechnical constructions) to 74 (shells of M. galloprovincialis at the depths of 3 and 6 m). On all the substrates, the following species were found; Alternaria alternata, Botryotrichum murorum. The communities were found to contain pathogenic fungi Aspergillus fumigatus (shells of mollusks, stones, concrete), A. terreus (concrete), Fusarium oxysporum, Pseudallescheria boydii (shells of mollusks). The best representation was seen for the Pleosporales order – from 12.9% (shells of M. galloprovincialis, 0.3 m depth) to 33.3% (shells of C. gigas) of the species composition. Toxin-producing species of Microascales in mycological communities accounted for 1.6% (driftwood) to 40.0% (concrete), and were also observed on shells of Bivalvia – 11.1–32.3%. Similarity of species composition of mycological communities according to Bray-Curtis coefficient varied 21.1% (driftwood and concrete, 10 shared species) to 72.7% (shells of M. galloprovincialis, the depths of 3 and 7 m and shells of C. gigas, 45 shared species). Using graphs of indices of mean taxonomic distinctness (AvTD, Δ+) and variation (Variation in Taxonomic Distinctness index, VarTD, Λ+), we determined deviations of taxonomic structure of the studied mycological communities from the level of mean expected values, calculated based on the list of species, taking into account their systematic positions. The lowest values of index Δ+ were determined for communities on shells of M. galloprovincialis, 0.3 m depth, driftwood, stones and concrete. These communities had uneven distribution of species according to higher taxonomic ranks and minimum number of the highest taxa: 4–6 classes, 1–2 divisions, Fungi kingdom. Disproportion in species composition with decrease in the number of the highest taxa occurred in extreme environmental conditions. Using index Λ+, we found that the most complex taxonomic structure of fungi communities has developed on concrete and shells of C. gigas. In mycological communities on those substrates, the number of species was low (25 and 46), but they belonged to 4–7 classes, 2–3 divisions, 1–2 kingdoms. To compare the structures of mycological communities that have developed in such substrates in biotopes sea, sea-land-air, land-air, we compiled a list of fungi based on the literature data, which, taking into account our data, comprised 445 species of 240 genera, 103 families, 51 orders, 15 classes, 5 divisions, 2 kingdoms. The analysis revealed that on substrates with similar chemical composition, in all the biotopes, the species of the same divisions dominated (genus and family may vary). Therefore, in the biotope land-air – Hypocreales, Pleosporales, Eurotiales (genera Acremonium, Fusarium, Alternaria, Aspergillus, Penicillium); sea – Pleosporales, Eurotiales, Microascales (Alternaria, Aspergillus, Penicillium, Corollospora); sea-land-air – Pleosporales, Microascales (Alternaria, Leptosphaeria, Aspergillus, Penicillium, Corollospora, Halosarpheia). Monitoring of species composition of myxomycetes is needed in farms that cultivate industrial objects, recreation sites, various buildings for prevention of mycotoxin intoxication and infestation by mycodermatoses and other diseases caused by opportunistic and pathogenic fungi.


Author(s):  
Eda Çelebi Bitkin ◽  
Alper Bitkin ◽  
Ender Cem Bulut ◽  
Oğuz Tuncer

Objective: Hypospadias is one of the most common congenital defects in boys. Multifactorial factors such as genetic predisposition and environmental factors play a role in the etiology of hypospadias. In this study, we investigated the risk factors of patients diagnosed with hypospadias. Materials and Methods: Thirty-six patients who applied to the pediatric endocrinology and urology outpatient clinics with the diagnosis of hypospadias were evaluated retrospectively. Risk factors were evaluated by recording the parental ages, exposure to environmental factors, the maternal BMI, history of pregnancy, drug use, and the father’s fertility status. Results: The mean age of the patients was 3.5 ± 2 years. The patients had anterior (n:27 : 75%), middle (midshaft) (n:8 ; 22.2%), and posterior (n:1 ; 2.8%) hypospadias. The mean body mass index (BMI) of the mothers was 24 ± 4.1 kg/m2. Eight (22.2%) mothers were overweight and six (16.6%) mothers were obese. There was a history of hypospadias in the family of 4 (11%) patients. Conclusion: Although combinations of environmental and genetic factors play a role in the etiology of hypospadias, many unexplained factors are responsible for this disease.


2012 ◽  
pp. 66-77 ◽  
Author(s):  
I. A. Lavrinenko ◽  
O. V. Lavrinenko ◽  
D. V. Dobrynin

The satellite images show that the area of marshes in the Kolokolkova bay was notstable during the period from 1973 up to 2011. Until 2010 it varied from 357 to 636 ha. After a severe storm happened on July 24–25, 2010 the total area of marshes was reduced up to 43–50 ha. The mean value of NDVI for studied marshes, reflecting the green biomass, varied from 0.13 to 0.32 before the storm in 2010, after the storm the NDVI decreased to 0.10, in 2011 — 0.03. A comparative analysis of species composition and structure of plant communities described in 2002 and 2011, allowed to evaluate the vegetation changes of marshes of the different topographic levels. They are fol­lowing: a total destruction of plant communities of the ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae on low and middle marches; increasing role of halophytic species in plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. typicum on middle marches; some changes in species composition and structure of plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. festucetosum rubrae on high marches and ass. Parnassio palustris–Salicetum reptantis in transition zone between marches and tundra without changes of their syntaxonomy; a death of moss cover in plant communities of the ass. Caricetum mackenziei var. Warnstorfia exannulata on brackish coastal bogs. The possible reasons of dramatic vegetation dynamics are discussed. The dating of the storm makes it possible to observe the directions and rates of the succession of marches vegetation.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 111
Author(s):  
Leonid M. Ivanov ◽  
Collins A. Collins ◽  
Tetyana Margolina

Using discrete wavelets, a novel technique is developed to estimate turbulent diffusion coefficients and power exponents from single Lagrangian particle trajectories. The technique differs from the classical approach (Davis (1991)’s technique) because averaging over a statistical ensemble of the mean square displacement (<X2>) is replaced by averaging along a single Lagrangian trajectory X(t) = {X(t), Y(t)}. Metzler et al. (2014) have demonstrated that for an ergodic (for example, normal diffusion) flow, the mean square displacement is <X2> = limT→∞τX2(T,s), where τX2 (T, s) = 1/(T − s) ∫0T−s(X(t+Δt) − X(t))2 dt, T and s are observational and lag times but for weak non-ergodic (such as super-diffusion and sub-diffusion) flows <X2> = limT→∞≪τX2(T,s)≫, where ≪…≫ is some additional averaging. Numerical calculations for surface drifters in the Black Sea and isobaric RAFOS floats deployed at mid depths in the California Current system demonstrated that the reconstructed diffusion coefficients were smaller than those calculated by Davis (1991)’s technique. This difference is caused by the choice of the Lagrangian mean. The technique proposed here is applied to the analysis of Lagrangian motions in the Black Sea (horizontal diffusion coefficients varied from 105 to 106 cm2/s) and for the sub-diffusion of two RAFOS floats in the California Current system where power exponents varied from 0.65 to 0.72. RAFOS float motions were found to be strongly non-ergodic and non-Gaussian.


1983 ◽  
Vol 46 (11) ◽  
pp. 978-981 ◽  
Author(s):  
B. A. WENTZ ◽  
A. P. DURAN ◽  
A. SWARTZENTRUBER ◽  
A. H. SCHWAB ◽  
R. B. READ

The microbiological quality of fresh blue crabmeat, soft- and hardshell clams and shucked Eastern oysters was determined at the retail (crabmeat, oysters) and wholesale (clams) levels. Geometric means of aerobic plate counts incubated at 35°C were: blue crabmeat 140,000 colony-forming units (CFU)/g, hardshell clams, 950 CFU/g, softshell clams 680 CFU/g and shucked Eastern oysters 390,000 CFU/g. Coliform geometric means ranged from 3,6/100 g for hardshell clams to 21/g for blue crabmeat. Means for fecal coliforms or Escherichia coli ranged from &lt;3/100 g for clams to 27/100 g for oysters, The mean Staphylococcus aureus count in blue crabmeat was 10/g.


Sign in / Sign up

Export Citation Format

Share Document