NON-STATIONARY BEHAVIOR OF A SOLID PROPELLANT CHARGE FOR NOZZLELESS SOLID ROCKET MOTORS UNDER GAS-DYNAMIC LOAD

Author(s):  
I.G. Voropaeva ◽  
◽  
A.A. Kozulin ◽  
L.L. Min’kov ◽  
E.R. Shrager ◽  
...  

The numerical solution to a conjugate problem of an unsteady flow of combustion products in a flow path of the nozzleless solid rocket motor (SRM) and the oscillation of a solid propellant charge under the action of the forces directed from combustion products is considered. The Navier-Stokes equations for a compressible viscous gas are used to mathematically describe the flow of the combustion products. To model the charge oscillations, the equations of solid mechanics are applied, which take into account the propellant hyperelasticity. Pressure distributions and the propellant burning rate along the charge channel are presented for different models of the propellant burning rate. It is revealed that at the stage of SRM design, the use of the burning rate law, determined by pressure in the head of the combustion chamber, is more preferable in order to assess the internal ballistic characteristics. The solution to the conjugate problem shows that in the nozzleless SRM with the propellant having low Young's modulus, resonance can occur, which causes uncontrolled charge oscillations.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wei Xianggeng ◽  
Bo Tao ◽  
Wang Pengbo ◽  
Ma Xinjian ◽  
Lou Yongchun ◽  
...  

Unexpected pressure rise may occur in the end-burning grain solid rocket motor. It is generally believed that this phenomenon is caused by the nonparallel layer combustion of the burning surface, resulting in the increase of burning rate along the inhibitor. In order to explain the cause of this phenomenon, the experimental investigation on four different end configurations were carried out. Based on the X-ray real-time radiography (RTR) technique, a new method for determining the dynamic burning rate of propellant and obtaining the real-time end-burning profile was developed. From the real-time images of the burning surface, it is found that there was a phenomenon of nonuniform burning surface displacement in the end-burning grain solid rocket motor. Through image processing, the real-time burning rate of grain center line and the real-time cone angle are obtained. Based on the analysis of the real-time burning rate at different positions of the end surface, the end face cone burning process in the motor working process is obtained. The closer to the shell, the higher the burning rate of the propellant. Considering the actual structure of this end-burning grain motor, it is speculated that the main cause of the cone burning of the grain may be due to the heat conduction of the metal wall. By adjusting the initial shape of the grain end surface, the operating pressure of the combustion chamber can be basically unchanged, so as to meet the mission requirements. The results show that the method can measure the burning rate of solid propellant in real time and provide support for the study of nonuniform combustion of solid propellant.


2019 ◽  
Vol 16 (32) ◽  
pp. 345-361
Author(s):  
B. A. UNASPEKOV ◽  
Z. O. ZHUMADILOVA ◽  
S. S. AUELBEKOV ◽  
A. S. TAUBALDIEVA ◽  
G. B. ALDABERGENOVA

A study was made of the nature of the movement of air mass in the space between the device that warms the room and the confining outer wall of the room. The hydrodynamic motion of the air mass was simulated on the basis of the two-dimensional in space Navier-Stokes equations and the convective heat conduction equation to find out a detailed picture of the physical processes that occur. Also for some particular cases, analytical solutions were obtained for the conjugate problem, where the movement of air is caused by its thermal expansion and the action of gravity in areas with different densities (Archimedes' forces). The simulation of more complex types of air movement with the formation of vortex flows using numerical methods and the corresponding program codes written in C++. It was found that the movement of air mass in the space between the device and the fence strongly depends not only on the temperature of the device, the wall, and the outside air. It was revealed that hydrodynamics and heat transfer are significantly influenced by two geometrical parameters: the distance between the device and the wall, and the distance from the flooring to the bottom of the device. In particular, a thin layer of the downward flow of cold air along the fence and above the floor is possible. The condition for the occurrence of such a downward flow has been found, it is determined by the ratio of the temperature of the wall, the device, and the average temperature in the room.


2017 ◽  
Vol 826 ◽  
pp. 396-420 ◽  
Author(s):  
M. Bouyges ◽  
F. Chedevergne ◽  
G. Casalis ◽  
J. Majdalani

This work introduces a similarity solution to the problem of a viscous, incompressible and rotational fluid in a right-cylindrical chamber with uniformly porous walls and a non-circular cross-section. The attendant idealization may be used to model the non-reactive internal flow field of a solid rocket motor with a star-shaped grain configuration. By mapping the radial domain to a circular pipe flow, the Navier–Stokes equations are converted to a fourth-order differential equation that is reminiscent of Berman’s classic expression. Then assuming a small radial deviation from a fixed chamber radius, asymptotic expansions of the three-component velocity and pressure fields are systematically pursued to the second order in the radial deviation amplitude. This enables us to derive a set of ordinary differential relations that can be readily solved for the mean flow variables. In the process of characterizing the ensuing flow motion, the axial, radial and tangential velocities are compared and shown to agree favourably with the simulation results of a finite-volume Navier–Stokes solver at different cross-flow Reynolds numbers, deviation amplitudes and circular wavenumbers.


Author(s):  
Guilherme Lourenço Mejia

Solid rocket motors (SRM) are extensively employed in satellite launchers, missiles and gas generators. Design considers propulsive parameters with dimensional, manufacture, thermal and structural constraints. Solid propellant geometry and computation of its burning rate are essential for the calculation of pressure and thrust vs time curves. The propellant grain geometry changes during SRM burning are also important for structural integrity and analysis. A computational tool for tracking the propagation of tridimensional interfaces and shapes is then necessary. In this sense, the objective of this work is to present the developed computational tool (named RSIM) to simulate the burning surface regression during the combustion process of a solid propellant. The SRM internal ballistics simulation is based on 3D propagation, using the level set method approach. Geometrical and thermodynamic data are used as input for the computation, while simulation results of geometry and chamber pressure versus time are presented in test cases.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yanjie Ma ◽  
Futing Bao ◽  
Lin Sun ◽  
Yang Liu ◽  
Weihua Hui

Erosive burning refers to the augmentation of propellant burning rate appears when the velocity of combustion gas flowing parallel to the propellant surface is relatively high. Erosive burning can influence the total burning rate of propellant and performance of solid rocket motors dramatically. There have been many different models to evaluate erosive burning rate for now. Yet, due to the complication processes involving in propellant and solid rocket motor combustion, unknown constants often exist in these models. To use these models, trial-and-error procedure must be implemented to determine the unknown constants firstly. This makes many models difficult to estimate erosive burning before plenty of experiments. In this paper, a new erosive burning rate model is proposed based on the assumption that the erosive burning rate is proportional to the heat flux at the propellant surface. With entrance effect, roughness, and transpiration considered, convective heat transfer coefficient correlation proposed in recent years is used to compute the heat flux. This allows the release of unknown constants, making the model universal and easy to implement. The computational data of the model are compared with different experimental and computational data from different models. Results show that good accuracy (10%) with experiments can be achieved by this model. It is concluded that the present model could be used universally for erosive burning rate evaluation of propellant and performance prediction of solid rocket motor as well.


Sign in / Sign up

Export Citation Format

Share Document