scholarly journals Derivation of Multiverse from Universal Wave Function Interpretation of String Theory

Author(s):  
Dr. Zhi Gang Sha ◽  
Rulin Xiu
2008 ◽  
Vol 17 (03n04) ◽  
pp. 583-589 ◽  
Author(s):  
SAMIR D. MATHUR

String theory tells us that quantum gravity has a dual description as a field theory (without gravity). We use the field theory dual to ask what happens to an object as it falls into the simplest black hole: the two-charge extremal hole. In the field theory description the wave function of a particle is spread over a large number of "loops," and the particle has a well-defined position in space only if it has the same "position" on each loop. For the infalling particle we find one definition of "same position" on each loop, but there is a different definition for outgoing particles and no canonical definition in general in the horizon region. Thus the meaning of "position" becomes ill-defined inside the horizon.


2009 ◽  
Vol 18 (14) ◽  
pp. 2215-2219 ◽  
Author(s):  
SAMIR D. MATHUR

When a shell collapses through its horizon, semiclassical physics suggests that information cannot escape from this horizon. One might hope that nonperturbative quantum gravity effects will change this situation and avoid the information paradox. We note that string theory has provided a set of states over which the wave function of the shell can spread, and that the number of these states is large enough that such a spreading would significantly modify the classically expected evolution. In this article we perform a simple estimate of the spreading time, showing that it is much shorter than the Hawking evaporation time for the hole. Thus information can emerge from the hole through the relaxation of the shell state into a linear combination of fuzzballs.


1993 ◽  
Vol 08 (14) ◽  
pp. 1331-1341 ◽  
Author(s):  
SUMIT R. DAS

We identify a quantity in the c = 1 matrix model which describes the wave function for physical scattering of a tachyon from a black hole of the two-dimensional critical string theory. At the semiclassical level this quantity corresponds to the usual picture of a wave coming in from infinity, part of which enters the black hole becoming singular at the singularity, while the rest is scattered back to infinity, with nothing emerging from the white hole. We find, however, that the exact non-perturbative wave function is non-singular at the singularity and appears to end up in the asymptotic region "behind" the singularity.


2018 ◽  
Vol 02 (01) ◽  
pp. 1750012
Author(s):  
Zhi Gang Sha ◽  
Rulin Xiu

The discovery of anomalies in the cosmic microwave background (CMB) indicates large-scale anisotropies, non-Gaussian distributions, and anomalous alignments of the quadrupole and octupole modes of the anisotropy with each other and with both the ecliptic and equinoxes. Further analysis indicates that the statistical anisotropy and non-Gaussian temperature fluctuations are mainly due to long-range correlations. However, the source of the large-scale correlation and the cause of the anomalous alignment in CMB remains unknown. In this work, we show a new development in string theory, the universal wave function interpretation of string theory (UWFIST) indicates the existence of large-scale quantum vibrations. These large-scale quantum vibrations can cause the large-scale correlation and anomalous alignment observed in the background field. They can explain the observed large-scale anisotropies, non-Gaussian distributions, and anomalous alignments of the quadrupole and octupole modes in the microwave background.


Author(s):  
Peter Rez

In high resolution microscopy the image amplitude is given by the convolution of the specimen exit surface wave function and the microscope objective lens transfer function. This is usually done by multiplying the wave function and the transfer function in reciprocal space and integrating over the effective aperture. For very thin specimens the scattering can be represented by a weak phase object and the amplitude observed in the image plane is1where fe (Θ) is the electron scattering factor, r is a postition variable, Θ a scattering angle and x(Θ) the lens transfer function. x(Θ) is given by2where Cs is the objective lens spherical aberration coefficient, the wavelength, and f the defocus.We shall consider one dimensional scattering that might arise from a cross sectional specimen containing disordered planes of a heavy element stacked in a regular sequence among planes of lighter elements. In a direction parallel to the disordered planes there will be a continuous distribution of scattering angle.


Sign in / Sign up

Export Citation Format

Share Document