scholarly journals Targeted Temperature Management of Severe Lactic Acidosis in a Patient with MELAS Syndrome after Cardiac Arrest

2021 ◽  
Vol 39 (3) ◽  
pp. 185-187
Author(s):  
Hyun Ji Kim ◽  
Byeongcheon Lee ◽  
Seong Kyu Yang ◽  
So Yeon Yun ◽  
Museong Kim ◽  
...  

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is known as a maternally inherited mitochondrial disease with a m.3243A>G mutation in the MT-TL1 gene. Here, we report a case of targeted temperature management in a MELAS patient who had a cardiac arrest and severe lactic acidosis after recurrent seizures.

2020 ◽  
Vol 38 (4) ◽  
pp. 276-280
Author(s):  
Joong-Goo Kim ◽  
Chul-Hoo Kang ◽  
Jay Chol Choi ◽  
Jiyong Shin ◽  
Min-Ju Kim ◽  
...  

Mitochondrial encephalomyopathy with lactic acid and stroke-like episodes (MELAS) is a multisystem mitochondrial disorder that is rarely observed in adulthood. We report a case of MELAS syndrome diagnosed in a 22-year-old man presented with status epilepticus (SE) without a preceding stroke-like episode. Genetic testing revealed a mutation of heteroplasmic m.3243A>G. MELAS should be suspected in patients with recurrent, uncontrolled SE with unexplained severe lactic acidosis.


2021 ◽  
Vol 14 (4) ◽  
pp. e235111
Author(s):  
Deepa Balachandran Nair ◽  
Mariana Bloomfield ◽  
Rajeswari Parasuraman ◽  
David T Howe

The syndrome of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is a rare mitochondrial disease with few documented cases in pregnancy. In this case report, we discuss the presentation and management of a 39-year-old grand multiparous lady with MELAS syndrome, which was diagnosed prior to her eighth pregnancy, discuss potential implications of the condition in pregnancy and summarise the current guidelines for the management of this rare condition.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yuji Suzuki ◽  
Matsuyuki Doi ◽  
Yoshiki Nakajima

Abstract Background Systemic anesthetic management of patients with mitochondrial disease requires careful preoperative preparation to administer adequate anesthesia and address potential disease-related complications. The appropriate general anesthetic agents to use in these patients remain controversial. Case presentation A 54-year-old woman (height, 145 cm; weight, 43 kg) diagnosed with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes underwent elective cochlear implantation. Infusions of intravenous remimazolam and remifentanil guided by patient state index monitoring were used for anesthesia induction and maintenance. Neither lactic acidosis nor prolonged muscle relaxation occurred in the perioperative period. At the end of surgery, flumazenil was administered to antagonize sedation, which rapidly resulted in consciousness. Conclusions Remimazolam administration and reversal with flumazenil were successfully used for general anesthesia in a patient with mitochondrial disease.


2021 ◽  
pp. 088506662110189
Author(s):  
Merry Huang ◽  
Aaron Shoskes ◽  
Migdady Ibrahim ◽  
Moein Amin ◽  
Leen Hasan ◽  
...  

Purpose: Targeted temperature management (TTM) is a standard of care in patients after cardiac arrest for neuroprotection. Currently, the effectiveness and efficacy of TTM after extracorporeal cardiopulmonary resuscitation (ECPR) is unknown. We aimed to compare neurological and survival outcomes between TTM vs non-TTM in patients undergoing ECPR for refractory cardiac arrest. Methods: We searched PubMed and 5 other databases for randomized controlled trials and observational studies reporting neurological outcomes or survival in adult patients undergoing ECPR with or without TTM. Good neurological outcome was defined as cerebral performance category <3. Two independent reviewers extracted the data. Random-effects meta-analyses were used to pool data. Results: We included 35 studies (n = 2,643) with the median age of 56 years (interquartile range [IQR]: 52-59). The median time from collapse to ECMO cannulation was 58 minutes (IQR: 49-82) and the median ECMO duration was 3 days (IQR: 2.0-4.1). Of 2,643, 1,329 (50.3%) patients received TTM and 1,314 (49.7%) did not. There was no difference in the frequency of good neurological outcome at any time between TTM (29%, 95% confidence interval [CI]: 23%-36%) vs. without TTM (19%, 95% CI: 9%-31%) in patients with ECPR ( P = 0.09). Similarly, there was no difference in overall survival between patients with TTM (30%, 95% CI: 22%-39%) vs. without TTM (24%, 95% CI: 14%-34%) ( P = 0.31). A cumulative meta-analysis by publication year showed improved neurological and survival outcomes over time. Conclusions: Among ECPR patients, survival and neurological outcome were not different between those with TTM vs. without TTM. Our study suggests that neurological and survival outcome are improving over time as ECPR therapy is more widely used. Our results were limited by the heterogeneity of included studies and further research with granular temperature data is necessary to assess the benefit and risk of TTM in ECPR population.


Author(s):  
Thomas Hvid Jensen ◽  
Peter Juhl-Olsen ◽  
Bent Roni Ranghøj Nielsen ◽  
Johan Heiberg ◽  
Christophe Henri Valdemar Duez ◽  
...  

Abstract Background Transthoracic echocardiographic (TTE) indices of myocardial function among survivors of out-of-hospital cardiac arrest (OHCA) have been related to neurological outcome; however, results are inconsistent. We hypothesized that changes in average peak systolic mitral annular velocity (s’) from 24 h (h) to 72 h following start of targeted temperature management (TTM) predict six-month neurological outcome in comatose OHCA survivors. Methods We investigated the association between peak systolic velocity of the mitral plane (s’) and six-month neurological outcome in a population of 99 patients from a randomised controlled trial comparing TTM at 33 ± 1 °C for 24 h (h) (n = 47) vs. 48 h (n = 52) following OHCA (TTH48-trial). TTE was conducted at 24 h, 48 h, and 72 h after reaching target temperature. The primary outcome was 180 days neurological outcome assessed by Cerebral Performance Category score (CPC180) and the primary TTE outcome measure was s’. Secondary outcome measures were left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), e’, E/e’ and tricuspid annular plane systolic excursion (TAPSE). Results Across all three scan time points s’ was not associated with neurological outcome (ORs: 24 h: 1.0 (95%CI: 0.7–1.4, p = 0.98), 48 h: 1.13 (95%CI: 0.9–1.4, p = 0.34), 72 h: 1.04 (95%CI: 0.8–1.4, p = 0.76)). LVEF, GLS, E/e’, and TAPSE recorded on serial TTEs following OHCA were neither associated with nor did they predict CPC180. Estimated median e’ at 48 h following TTM was 5.74 cm/s (95%CI: 5.27–6.22) in patients with good outcome (CPC180 1–2) vs. 4.95 cm/s (95%CI: 4.37–5.54) in patients with poor outcome (CPC180 3–5) (p = 0.04). Conclusions s’ assessed on serial TTEs in comatose survivors of OHCA treated with TTM was not associated with CPC180. Our findings suggest that serial TTEs in the early post-resuscitation phase during TTM do not aid the prognostication of neurological outcome following OHCA. Trial registration NCT02066753. Registered 14 February 2014 – Retrospectively registered,


2021 ◽  
pp. 001857872110323
Author(s):  
W. Anthony Hawkins ◽  
Jennifer Y. Kim ◽  
Susan E. Smith ◽  
Andrea Sikora Newsome ◽  
Ronald G. Hall

Background: Propofol is a key component for the management of sedation and shivering during targeted temperature management (TTM) following cardiac arrest. The cardiac depressant effects of propofol have not been described during TTM and may be especially relevant given the stress to the myocardium following cardiac arrest. The purpose of this study is to describe hemodynamic changes associated with propofol administration during TTM. Methods: This single center, retrospective cohort study evaluated adult patients who received a propofol infusion for at least 30 minutes during TTM. The primary outcome was the change in cardiovascular Sequential Organ Failure Assessment (cvSOFA) score 30 minutes after propofol initiation. Secondary outcomes included change in systolic blood pressure (SBP), mean arterial pressure (MAP), heart rate (HR), and vasopressor requirements (VR) expressed as norepinephrine equivalents at 30, 60, 120, 180, and 240 minutes after propofol initiation. A multivariate regression was performed to assess the influence of propofol and body temperature on MAP, while controlling for vasopressor dose and cardiac arrest hospital prognosis (CAHP) score. Results: The cohort included 40 patients with a median CAHP score of 197. The goal temperature of 33°C was achieved for all patients. The median cvSOFA score was 1 at baseline and 0.5 at 30 minutes, with a non-significant change after propofol initiation ( P = .96). SBP and MAP reductions were the greatest at 60 minutes (17 and 8 mmHg; P < .05 for both). The median change in HR at 120 minutes was −9 beats/minute from baseline. This reduction was sustained through 240 minutes ( P < .05). No change in VR were seen at any time point. In multivariate regression, body temperature was the only characteristic independently associated with changes in MAP (coefficient 4.95, 95% CI 1.6-8.3). Conclusion: Administration of propofol during TTM did not affect cvSOFA score. The reductions in SBP, MAP, and HR did not have a corresponding change in vasopressor requirements and are likely not clinically meaningful. Propofol appears to be a safe choice for sedation in patients receiving targeted temperature management after cardiac arrest.


Sign in / Sign up

Export Citation Format

Share Document