scholarly journals Crystal Structure and Photophysical Properties of a Novel Dy-Hg Isonicotinic Acid Compound with One-Dimensional Chain-Like Cations

2020 ◽  
Vol 67 (4) ◽  
pp. 1111-1117
Author(s):  
Wen-Tong Chen

A novel Dy-Hg compound [Dy(HIA)3(H2O)2]2n · 2nHgCl4 · nHgCl5 · nH3O · 3nH2O (1; HIA = isonicotinic acid) was prepared through a hydrothermal reaction and characterized by X-ray diffraction. The compound crystallizes in the space group of C2/c of the monoclinic system. The crystal structure of compound 1 has one-dimensional (1-D) chain-like cations. A photoluminescence experiment with a solid-state sample revealed that this compound exhibits a yellow emission band at 575 nm and, this emission band shall come from the 4f electron 4F9/2 → 6H13/2 characteristic transfer of Dy3+ ions. The compound features CIE chromaticity coordinates of 0.5168 and 0.4824 in the yellow region. A UV-visible diffuse reflectance spectrum with a solid-state sample unveiled that this compound possesses a wide optical band gap of 3.39 eV.

2009 ◽  
Vol 74 (7) ◽  
pp. 755-764 ◽  
Author(s):  
Wen-Tong Chen ◽  
Xiao-Niu Fang ◽  
Qiu-Yan Luo ◽  
Ya-Ping Xu

A novel bimetallic 4f-3d metal-isonicotinic acid inorganic-organic hybrid complex [{Eu(NC5H4COOH)3(H2O)2}(1.5ZnCl4)?(2H2O)]n (1) was synthesized via a hydrothermal reaction and structurally characterized by single- crystal X-ray diffraction. Complex 1 crystallizes in the space group C2/c of the monoclinic system with eight formula units in a cell: a = 23.878(8) ?, b = 20.573(6) ?, c = 15.358(5) ?, ? = 127.276(5)?, V = 6003(3) ?3, C18H23Cl6EuN3O10Zn1.5, Mr = 904.11 g/mol, ? = 2.001 g/cm3, S = 1.077, ?(MoK?) = 3.846 mm-1, F(000) = 3536, R = 0.0270 and wR = 0.0672. Complex 1 has a characteristic, one-dimensional polycationic chain-like structure. A photoluminescent investigation revealed that the title complex displays intense emissions in the orange and red regions. The luminescence spectra show that the red emission is stronger than the orange emission. Optical absorption spectra of 1 revealed the presence of an optical gap of 3.56 eV.


2020 ◽  
Vol 44 (5-6) ◽  
pp. 343-348
Author(s):  
Wen-Tong Chen

A hydrothermal reaction results in the formation of a novel [Pr2(2,5-PA)2(2,5-HPA)2(H2O)4] n·2 nH2O complex (2,5-H2PA = 2,5-pyridinedicarboxylic acid). The complex is structurally characterized by single-crystal X-ray diffraction and crystallizes in the space group P21 of the monoclinic system with two formula units in one cell. This praseodymium complex is characterized by a two-dimensional layered structure. A solid-state photoluminescence experiment reveals that the praseodymium complex shows an emission in the red region. The complex has Commission Internationale de I’Éclairage chromaticity coordinates of 0.5495 and 0.4492. The photoluminescence emission bands could be assigned to the characteristic emission of the 4 f electron intrashell transition of the 3 P0 → 3 H5, 1 D2 → 3 H4, 3 P0 → 3 H6, 3 P0 → 3 F2, and 3 P1 → 3 F3 of the Pr3+ ions. The energy transfer mechanism is explained by the energy level diagrams of the praseodymium ions and the 2,5-H2PA ligand. A solid-state diffuse reflectance measurement shows that the complex possesses a wide optical band gap of 3.48 eV.


2020 ◽  
Vol 76 (5) ◽  
pp. 375-380
Author(s):  
Wen-Tong Chen

A novel manganese(III)–porphyrin complex, namely, catena-poly[[chloridomanganese(III)]-μ2-5,10,15,20-tetrakis(pyridin-3-yl)-21H,23H-porphinato(2−)-κ5 N 21,N 22,N 23,N 24:N 5], [MnCl(C40H24N8)] n , 1, was prepared by the hydrothermal reaction of manganese chloride with 5,10,15,20-tetrakis(pyridin-3-yl)-21H,23H-porphine. The crystal structure was determined by single-crystal X-ray diffraction. The porphyrin macrocycle exhibits a saddle-like distortion geometry. The MnIII atom has a six-coordination geometry. Each porphyrin unit links to two neighbouring units to yield a one-dimensional coordination polymer. These chains are further interlinked by hydrogen bonds to form a two-dimensional network. The complex shows red photoluminescence emission bands in ethanol solution, which can be attributed to ligand-to-ligand charge transfer (LLCT) accompanied by partial metal-to-ligand charge transfer (MLCT), as revealed by TDDFT calculations.


2020 ◽  
Vol 44 (11-12) ◽  
pp. 727-732
Author(s):  
Wen-Tong Chen

A hydrothermal reaction leads to the formation of a novel erbium–mercury compound [Er(IA)3(H3O)(H2O)] n(0.5 nHg2I6) (1) (HIA = isonicotinic acid). The compound has been characterized by single-crystal X-ray diffraction. It is characteristic of a one-dimensional chain-like structure and a two-dimensional supramolecular layer. A solid-state photoluminescence experiment reveals that this compound displays upconversion green photoluminescence. The photoluminescence emission peaks can be attributed to the 4 G11/2 → 4 I15/2, 4 F7/2 → 4 I15/2, and 2 H11/2 → 4 I15/2 of the Er3+ ions. The energy transfer mechanism is consistent with the energy-level diagrams of the erbium ions and isonicotinic acid ligand. This compound possesses Commission Internationale de I'Éclairage chromaticity coordinates of 0.1755 and 0.5213. A solid-state diffuse reflectance measurement reveals that this compound features a narrow optical band gap of 1.97 eV.


2016 ◽  
Vol 12 ◽  
pp. 825-834 ◽  
Author(s):  
Andreea Petronela Diac ◽  
Ana-Maria Ţepeş ◽  
Albert Soran ◽  
Ion Grosu ◽  
Anamaria Terec ◽  
...  

New indeno[1,2-c]pyran-3-ones bearing different substituents at the pyran moiety were synthesized and their photophysical properties were investigated. In solution all compounds were found to be blue emitters and the trans isomers exhibited significantly higher fluorescence quantum yields (relative to 9,10-diphenylanthracene) as compared to the corresponding cis isomers. The solid-state fluorescence spectra revealed an important red shift of λmax due to intermolecular interactions in the lattice, along with an emission-band broadening, as compared to the solution fluorescence spectra.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Guo-Qing Zhong ◽  
Wen-Wei Zhong ◽  
Rong-Rong Jia ◽  
Yu-Qing Jia

The bioinorganic complex of aspartic acid and arsenic triiodide was synthesized by a solid-state reaction at room temperature. The formula of the complex is AsI3[HOOCCH2CH(NH2)COOH]2.5. The crystal structure of the complex belongs to monoclinic system with lattice parameters:a=1.0019 nm,b=1.5118 nm,c=2.1971 nm, andβ=100.28°. The infrared spectra can demonstrate the complex formation between the arsenic ion and aspartic acid, and the complex may be a dimer with bridge structure. The result of primary biological test indicates that the complex possesses better biological activity for the HL-60 cells of the leukemia than arsenic triiodide.


1995 ◽  
Vol 2 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Angel Garcia-Raso ◽  
Juan J. Fiol ◽  
Elies Molins ◽  
Antonia M. Calafat ◽  
Patricia A. Marzilli ◽  
...  

The first X-ray structure of an isatin (2,3-indolinedione, isaH) metal complex, bis(isatinato)memury(II) (C16H8N2O4Hg) (1), was determined. (1) was obtained from the reaction of isaH with mercury(II) acetate in methanol. Analogously, treatment of sodium saccharinate and mercury(II) acetate in methanol yielded Hg(saccharinato)2•0.5CH3OH (3). (1) crystallizes in the monoclinic system, space group P21/a with a = 7.299(1) Å, b = 8.192(1) Å, c = 11.601(1) Å , β = 105.82(1)°, V = 667.4 Å3, Z = 2, Dcalc = 2.452 g cm−3, MoKα radiation(λ = 0.71073 Å), μ = 115.5 cm-1, F(000) = 460, 21(1) °C. The structure was refined on the basis of 2023 observed reflections to R= 0.044. The two deprotonated, non coplanar isa ligands are trans to each other in a head to tail orientation and bound to the Hg through the nitrogen in a linear N-Hg-N arrangement. The Hg atom is at the center of symmetry of the complex and displaced by 0.62 Å from the two planes of the isa ligands (τ Hg-N1-C2-O2= -16°). The Hg-N bond length is 2.015 Å. Noπ-aryl-memury(ll)-π-aryl stacking interaction was observed either in the solid state or in the solution state. The IR, electronic, and H1 and C13NMR spectral data of (1) and (3) suggest binding of the memury to the heterocyclic nitrogen, in agreement with the crystal structure determination of (1).


2018 ◽  
Vol 149 ◽  
pp. 01085
Author(s):  
Elhassan Benhsina ◽  
Abderrazzak Assani ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

Phosphates are an important class of materials which are well-known due to their structural diversity and their important potential application in many fields of sciences. A member of this family, represented by transition metal phosphates, is in the forefront of important researchers. A new manganese and indium based phosphate is successfully isolated by means of solid state reaction. Its corresponding crystal structure is isotypic to the alluaudite and crystallizes in the monoclinic system with the space group C2/c and cell parameters a=12.4697(5)Å ; b=12.9365(5)Å ; c=6.5625(3)Å and β=115.603(1)°. The framework of this phosphate is built up on the basis of MnO6, InO6 and PO4 polyhedra. The InO6 octahedra are linked together via common edge, leading to the formation of In2O10 dimers. The In2O10 dimers share edge with MnO6 octahedra, generating chains along the [101] direction. The PO4 tetrahedra connect two chains giving arise to a three-dimensional framework with hexagonal tunnels where the barium and calcium are located.


2020 ◽  
Vol 76 (12) ◽  
pp. 1062-1067
Author(s):  
Wen-Tong Chen

A novel polyoxomolybdate with a diprotonated porphyrin as counter-cation, namely, 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,22H,23H,24H-porphine(2+) hexamolybdate(VI) pentahydrate, (C48H32N4O8)[Mo6O19]·5H2O or (H2TCPP)[Mo6O19]·5H2O, I, was prepared via the hydrothermal reaction of MoCl5, 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,23H-porphine (TCPP) and distilled water. The crystal structure of hydrated polyoxometalate (POM) salt I was characterized by single-crystal X-ray diffraction. The compound is characterized by an isolated (zero-dimensional, 0D) structure, because it cannot extend via covalent bonds. The structure contains one [Mo6O19]2− anion, one (H2TCPP)2+ cation and five lattice water molecules. Each of the Mo6+ ions is six-coordinated and displays a distorted octahedral motif. The (H2TCPP)2+ cation displays a distorted saddle motif. A three-dimensional (3D) supramolecular framework is formed via hydrogen-bonding interactions. The compound shows a red photoluminescence emission.


Sign in / Sign up

Export Citation Format

Share Document