scholarly journals Performance and Energy Consumption Evaluation of Rotating Biological Contactor for Domestic Wastewater Treatment

2021 ◽  
Vol 6 (1) ◽  
pp. 101-112
Author(s):  
Sharjeel Waqas ◽  
Muhammad Roil Bilad ◽  
Zakaria B Man

Biological processes are extensively used for wastewater treatment because of low organic footprint, economically feasible, and high treatment efficiency. Rotating biological contactors (RBC), an attached growth biological process offers advantage of low operating cost, simple configuration and structure, reduced bionomical footprint and thus has been extensively employed for organics and nitrogen removal. In this study, RBC was used for the treatment of synthetic domestic wastewater operating at high hydraulic and organic loading rate to demonstrate the biological performance. The results showed that the RBC achieved a treatment efficiency for COD, ammonium, TN and turbidity of 70.2%, 95.2%, 70%, and 78.9 %, respectively. The efficient nitrogen removal and increased nitrate concentration signify the presence of nitrifying bacteria which actively degrade the nitrogen compounds through the nitrification process. Thus, this system is a sound alternative for both domestic and industrial wastewater treatment for decentralized applications.

2005 ◽  
Vol 51 (10) ◽  
pp. 85-92 ◽  
Author(s):  
C. Chiemchaisri ◽  
K. Yamamoto

Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid–liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 °C. As the temperature was stepwise decreased from 25 to 5 °C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 °C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2–3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.


2004 ◽  
Vol 50 (6) ◽  
pp. 95-101
Author(s):  
C. Chiemchaisri ◽  
C. Liamsangoun

This paper presents the performance of a multi-stage biodrum system applied to domestic wastewater treatment. The organic stabilization and nitrogen removal efficiency in the system was investigated at different hydraulic retention times (HRT) of 12, 6 and 3 hours. The rotational speed of the biodrum was examined at 2,4 and 8 rpm. Average organic removal efficiencies in the system at different HRTs of 12, 6 and 3 hours were 96.3, 94.4 and 90.9%. Simultaneously, average nitrogen removal efficiencies were 91.5, 90.6 and 81.0%. The effect of rotational speed on nitrogen removal efficiencies in the system was clearly observed at a low HRT of 3 hours. The experimental results suggested that optimum HRT in the system was 6 hours. Moreover, they revealed that nitrogen removal efficiencies in the reactors operated at different rotational speed were in the same degree when considering the effluent nitrogen concentration. However, the reactors operated at lower rotational speed needed to employ higher numbers of biodrums (4 stages) than the others with higher rotational speed (3 and 2 stages at 4 and 8 rpm.) in order to achieve similar effluent qualities. At a rotational speed of 2 rpm, maximum nitrogen removal rate was found to be 0.2 kg/m3/d.


2011 ◽  
Vol 63 (4) ◽  
pp. 654-659 ◽  
Author(s):  
F. Zurita ◽  
M. A. Belmont ◽  
J. De Anda ◽  
J. R. White

The aim of this study was to evaluate the domestic wastewater treatment efficiency as well as the survivability of commercially valuable ornamental plants in subsurface flow wetlands (SSFW) for domestic wastewater (DWW) treatment in laboratory and pilot wetland studies. The laboratory scale study included five different species (Zantedeschia aethiopica, Strelitzia reginae, Anthurium andreanum, Canna hybrids and Hemmerocallis dumortieri) that were evaluated in horizontal flow subsurface treatment cells. All the plants survived during the 6-month experimental period demonstrating high wetland nutrient treatment efficiency. In order to validate and expand these preliminary results, a pilot-scale wetland study was carried out in SSFWs under two different flow regimes (horizontal and vertical flow). Four ornamental species were tested during a 1-year period: Zantedeschia aethiopica, Strelitzia reginae, Anthurium andreanum and Agapanthus africanus. The removal efficiencies were significantly higher in the vertical subsurface-flow constructed wetlands (VFCW) for all pollutants, except for nitrate (NO3-N), total nitrogen (TN) and total suspended solids (TSS). These results show that it is feasible to use select non-wetland plants with high market value in SSFWs without reducing the efficiency of the wastewater treatment system, although future work should continue in order to apply this technology in a large scale. The added value of floriculture in treatment wetlands can help to promote the use of constructed wetlands (CW) for domestic wastewater treatment in developing countries where economical resources are scarce and water pollution with DWW is common.


2011 ◽  
Vol 63 (4) ◽  
pp. 776-781 ◽  
Author(s):  
A. M. Paruch ◽  
T. Mæhlum ◽  
H. Obarska-Pempkowiak ◽  
M. Gajewska ◽  
E. Wojciechowska ◽  
...  

This article describes Norwegian and Polish experiences concerning domestic wastewater treatment obtained during nearly 20 years of operation for constructed wetland (CW) systems in rural areas and scattered settlements. The Norwegian CW systems revealed a high performance with respect to the removal of organic matter, biogenic elements and faecal indicator bacteria. The performance of the Polish CW systems was unstable, and varied between unsatisfied and satisfied treatment efficiency provided by horizontal and vertical flow CWs, respectively. Therefore, three different concepts related to the improvement of CW technology have been developed and implemented in Poland. These concepts combined some innovative solutions originally designed in Norway (e.g. an additional treatment step in biofilters) with Polish inspiration for new CWs treating rural domestic wastewater. The implementation of full-scale systems will be evaluated with regard to treatment efficiency and innovative technology; based on this, a further selection of the most favourable CW for rural areas and scattered settlements will be performed.


Sign in / Sign up

Export Citation Format

Share Document