scholarly journals Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance

2018 ◽  
Vol 631-632 ◽  
pp. 1406-1414 ◽  
Author(s):  
Clara Corbella ◽  
Jaume Puigagut
2011 ◽  
Vol 63 (4) ◽  
pp. 776-781 ◽  
Author(s):  
A. M. Paruch ◽  
T. Mæhlum ◽  
H. Obarska-Pempkowiak ◽  
M. Gajewska ◽  
E. Wojciechowska ◽  
...  

This article describes Norwegian and Polish experiences concerning domestic wastewater treatment obtained during nearly 20 years of operation for constructed wetland (CW) systems in rural areas and scattered settlements. The Norwegian CW systems revealed a high performance with respect to the removal of organic matter, biogenic elements and faecal indicator bacteria. The performance of the Polish CW systems was unstable, and varied between unsatisfied and satisfied treatment efficiency provided by horizontal and vertical flow CWs, respectively. Therefore, three different concepts related to the improvement of CW technology have been developed and implemented in Poland. These concepts combined some innovative solutions originally designed in Norway (e.g. an additional treatment step in biofilters) with Polish inspiration for new CWs treating rural domestic wastewater. The implementation of full-scale systems will be evaluated with regard to treatment efficiency and innovative technology; based on this, a further selection of the most favourable CW for rural areas and scattered settlements will be performed.


2011 ◽  
Vol 64 (4) ◽  
pp. 904-909 ◽  
Author(s):  
S. Puig ◽  
M. Serra ◽  
M. Coma ◽  
M. D. Balaguer ◽  
J. Colprim

Microbial fuel cells (MFCs) can be used in wastewater treatment and to simultaneously produce electricity (renewable energy). MFC technology has already been applied successfully in lab-scale studies to treat domestic wastewater, focussing on organic matter removal and energy production. However, domestic wastewater also contains nitrogen that needs to be treated before being discharged. The goal of this paper is to assess simultaneous domestic wastewater treatment and energy production using an air-cathode MFC, paying special attention to nitrogen compound transformations. An air-cathode MFC was designed and run treating 1.39 L d−1 of wastewater with an organic load rate of 7.2 kg COD m−3 d−1 (80% removal efficiency) and producing 1.42 W m−3. In terms of nitrogen transformations, the study demonstrates that two different processes took place in the MFC: physical–chemical and biological. Nitrogen loss was observed increasing in line with the power produced. A low level of oxygen was present in the anodic compartment, and ammonium was oxidised to nitrite and nitrate.


Sign in / Sign up

Export Citation Format

Share Document