scholarly journals Determination of the Mineral Composition of the Lake Bottom Sediments by X-Ray Diffraction Method and Physico-Chemical Modelling

Author(s):  
Roman V. Smelyy ◽  
Ekaterina V. Kaneva ◽  
Anastasiya V. Oshchepkova ◽  
Valerii A. Bychinskii ◽  
Tat’yana S. Aisueva ◽  
...  

The paper reports comparison of three approaches to define the contents of minerals and mineral groups in the carbonate-silicate lake bottom sediments. The two approaches are based on the method of X-ray powder diffraction. The first one treats with the Rietveld Method in the software DIFFRAC Plus diffractometer D8 Advance (PDF-2 database). The second one uses the method of reference intensities (corundum ratios) and optimization of the model powder patterns from the X-ray phase standards of PDF-2 database and equations of the element balance with regularization of the least square functional. The third approach of physic-chemical modeling selects probable single mineral and multi-component phases through modelling the sold solutions, and it uses the data on the element composition obtained by XRF technique, as well as the data of X-ray diffraction on the qualitative mineral composition. Thirty samples of bottom sediment cores taken in the Zun-Torey Lake in East Siberia were analyzed by the three approaches described herein. The contents of mineral groups (feldspars, quartz, clay minerals and carbonates) varied within the range 10-40 mass %. The discrepancies between obtained results show the standard deviation ranging from 2 to 9 mass %. A relative standard deviation commonly provides the value below 30 %, so such determinations could be considered quantitative ones. With regard to the acquired data, it is hard to prefer this or that approach. Available data was employed to assess the error of X-ray phase powder analysis in measuring the abundance of mineral groups in the carbonate-silicate sedimentary rocks in the absence of reference materials to compare with certified mineral composition

Author(s):  
Roman V. Smelyi ◽  
Alexander L. Finkelshtein ◽  
Igor S. Yakimov ◽  
Alena A. Amosova ◽  
Victor M. Chubarov

A method is proposed for estimating the range of mineral group content in the cores of silicate bottom sediments of lakes based on the search for the minimum and maximum content of stoichiometric minals that make up the group of minerals, provided that the balance of the mineral composition and the content of elements in the sample is observed. The mineral components were determined using the method of qualitative X-ray phase analysis, the contents of the main rock-forming elements were determined by X-ray fluorescence analysis. Comparison with the results of quantitative X-ray phase analysis showed that the contents of mineral groups either lie in the range calculated in the extreme search procedure based on data on the element composition, or overlap with the calculated range within the measurement error. The systematic discrepancy between the results of calculating the range of content of the silicon dioxide phase and the results of quantitative X-ray phase determination of quartz observed for the samples under consideration is due to the presence of an X-ray amorphous phase of biogenic silica. The proposed method for estimating the range of mineral group content is easy to implement, uses the publicly available MS Excel software, and can be useful for estimating variations in mineral composition by core depth, in conditions of frequent shortages of individual sample material distributed between different methods of analysis


2019 ◽  
Vol 98 ◽  
pp. 08012
Author(s):  
Ivan Kirichenko ◽  
Nikolay Dobretsov ◽  
Sergey Zhmodik ◽  
Elena Lazareva ◽  
Dmitry Belyanin

The distribution of chemical elements in bottom sediments of Fumarolnoe lake was obtained by XRFA. The mineral composition of the sediment was examined by SEM, XPA. Variations in contents of alkaline elements in the column of bottom sediments of the Fumarolnoe Lake have been studied using spectral methods (Wavelet and Fourier analyses). It has been established that concentrations of these elements change periodically, periods being correlated with periodic changes in seismic conditions of the present region


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Durga Sankar Vavilapalli ◽  
Ambrose A. Melvin ◽  
F. Bellarmine ◽  
Ramanjaneyulu Mannam ◽  
Srihari Velaga ◽  
...  

AbstractIdeal sillenite type Bi12FeO20 (BFO) micron sized single crystals have been successfully grown via inexpensive hydrothermal method. The refined single crystal X-ray diffraction data reveals cubic Bi12FeO20 structure with single crystal parameters. Occurrence of rare Fe4+ state is identified via X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The lattice parameter (a) and corresponding molar volume (Vm) of Bi12FeO20 have been measured in the temperature range of 30–700 °C by the X-ray diffraction method. The thermal expansion coefficient (α) 3.93 × 10–5 K−1 was calculated from the measured values of the parameters. Electronic structure and density of states are investigated by first principle calculations. Photoelectrochemical measurements on single crystals with bandgap of 2 eV reveal significant photo response. The photoactivity of as grown crystals were further investigated by degrading organic effluents such as Methylene blue (MB) and Congo red (CR) under natural sunlight. BFO showed photodegradation efficiency about 74.23% and 32.10% for degrading MB and CR respectively. Interesting morphology and microstructure of pointed spearhead like BFO crystals provide a new insight in designing and synthesizing multifunctional single crystals.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 753
Author(s):  
Dmitriy Shlimas ◽  
Artem L. Kozlovskiy ◽  
Maxim Zdorovets

The interest in lithium-containing ceramics is due to their huge potential as blanket materials for thermonuclear reactors for the accumulation of tritium. However, an important factor in their use is the preservation of the stability of their strength and structural properties when under the influence of external factors that determine the time frame of their operation. This paper presents the results of a study that investigated the influence of the LiTiO2 phase on the increasing resistance to degradation and corrosion of Li2TiO3 ceramic when exposed to aggressive acidic media. Using the X-ray diffraction method, it was found that an increase in the concentration of LiClO4·3H2O during synthesis leads to the formation of a cubic LiTiO2 phase in the structure as a result of thermal sintering of the samples. During corrosion tests, it was found that the presence of the LiTiO2 phase leads to a decrease in the degradation rate in acidic media by 20–70%, depending on the concentration of the phase. At the same time, and in contrast to the samples of Li2TiO3 ceramics, for which the mechanisms of degradation during a long stay in aggressive media are accompanied by large mass losses, for the samples containing the LiTiO2 phase, the main degradation mechanism is pitting corrosion with the formation of pitting inclusions.


1990 ◽  
Vol 7 (7) ◽  
pp. 308-311
Author(s):  
Li Chaorong ◽  
Mai Zhenhong ◽  
Cui Shufan ◽  
Zhou Junming ◽  
Yutian Wang

Sign in / Sign up

Export Citation Format

Share Document