scholarly journals Evaluasi Inverse Kinematics untuk Robot Quadruped Menggunakan Sensor Accelerometer

2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Ahmad Iqbal Nasrudin ◽  
Khairul Anam ◽  
M. Agung Prawira N

Quadruped robot is one of the types of robots that move using legs 4 compiled by some of the servo motor as a driving force on each foot ft the DOF is used. However, problems arise when this robot is confronted on the inclined plane, because the burden is borne out every servo motor on the feet will be different, so can make a fast servo motor damaged. This research was conducted on the design of the quadruped robot system for stability on the inclined plane using the accelerometer sensor and the application of the inverse kinematics method with PID control of Ziegler-Nichols. The results of tests obtained response robots in stabilizing the body when faced with the inclined plane with some degree of slope of the pitch and roll. In this research was conducted some test for quadruped robot: static Testing robot against the angel of the pitch in the standby retrieved response average robot in stabilizing the body is 245 ms, static Testing robot against the angle of roll in standby retrieved response average robot in stabilizing the body is 280 ms, dynamic Testing robot against the roll and pitch in standby retrieved response average robot in stabilizing the body is 8 seconds, Static Testing robot to stabilizing the body against the angel of roll in running the largest robot oscillations obtained 10 degrees, dynamic Testing robot to stabilizing the body against the angle of roll in run retrieved response average robot in stabilizing the body is 490 ms.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Megan Hamilton ◽  
Harry Sivasambu ◽  
Kamran Behdinan ◽  
Jan Andrysek

BACKGROUND: Pressure sensing at the body-device interface can help assess the quality of fit and function of assistive devices during physical activities and movement such as walking and running. However, the dynamic performance of various pressure sensor configurations is not well established. OBJECTIVE(S): Two common commercially available thin-film pressure sensors were tested to determine the effects of clinically relevant setup configurations focusing on loading areas, interfacing elements (i.e. ‘puck’) and calibration methods. METHODOLOGY: Testing was performed using a customized universal testing machine to simulate dynamic, mobility relevant loads at the body-device interface. Sensor performance was evaluated by analyzing accuracy and hysteresis. FINDINGS: The results suggest that sensor calibration method has a significant effect on sensor performance although the difference is mitigated by using an elastomeric loading puck. Both sensors exhibited similar performance during dynamic testing that agree with accuracy and hysteresis values reported by manufacturers and in previous studies assessing mainly static and quasi-static conditions. CONCLUSION: These findings suggest that sensor performance under mobility relevant conditions may be adequately represented via static and quasi-testing testing.  This is important since static testing is much easier to apply and reduces the burden on users to verify dynamic performance of sensors prior to clinical application. The authors also recommend using a load puck for dynamic testing conditions to achieve optimal performance. Layman's Abstract Pressure sensors can be used in prosthetics to provide clinicians with data about how well a device fits and functions. However, pressure sensors are unproven when it comes to use during activities such as walking or running. This study tested two common pressure sensors in a setup that applied forces similar to walking. These findings indicate that sensor calibration affects sensor accuracy. Accuracy can be improved by applying a small puck to the sensor to spread the load more evenly. With the puck, the performance of the sensors was found to be acceptable for potential use in clinical applications. These findings also show that dynamic testing of pressure sensors may not be needed prior to clinical usage. Instead, performance can be based on static testing which is easier to do. Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/36059/27891 How To Cite: Hamilton M, Sivasambu H, Behdinan K, Andrysek J. Evaluating the dynamic performance of interfacial pressure sensors at a simulated body-device interface. Canadian Prosthetics & Orthotics Journal. 2021;Volume 4, Issue 1, No.4. https://doi.org/10.33137/cpoj.v4i1.36059 Corresponding Author: Jan Andrysek, PhD,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.Email: [email protected]: https://orcid.org/0000-0002-4976-1228


2021 ◽  
Author(s):  
Yiyu Chen ◽  
Abhinav Pandey ◽  
Zhiwei Deng ◽  
Anthony Nguyen ◽  
Ruiqi Wang ◽  
...  

Abstract The global COVID-19 pandemic has inevitably made disinfection a daily routine to ensure the safety of public and private spaces. However, the existing disinfection procedures are time-consuming and require intensive human labor to apply chemical-based disinfectant onto contaminated surfaces. In this paper, a robot disinfection system is presented to increase the automation of the disinfection task to assist humans in performing routine disinfection safely and efficiently. This paper presents a semi-autonomous quadruped robot called LASER-D for performing disinfection in cluttered environments. The robot is equipped with a spray-based disinfection system and leverages the body motion to control the spray action without an extra stabilization mechanism. The spraying unit is mounted on the robot’s back and controlled by the robot computer. The control architecture is designed based on force control, resulting in navigating rough terrains and the flexibility in controlling the body motion during standing and walking for the disinfection task. The robot also uses the vision system to improve localization and maintain desired distance to the disinfection surface. The system incorporates image processing capability to evaluate disinfected regions with high accuracy. This feedback is then used to adjust the disinfection plan to guarantee that all assigned areas are disinfected properly. The system is also equipped with highly integrated simulation software to design, simulate and evaluate disinfection plans effectively. This work has allowed the robot to successfully carry out effective disinfection experiments while safely traversing through cluttered environments, climb stairs/slopes, and navigate on slippery surfaces.


Heliyon ◽  
2018 ◽  
Vol 4 (12) ◽  
pp. e01053 ◽  
Author(s):  
Md. Moin Uddin Atique ◽  
Md. Rafiqul Islam Sarker ◽  
Md. Atiqur Rahman Ahad

2014 ◽  
Vol 950 ◽  
pp. 263-267
Author(s):  
Xi Juan Wang ◽  
Wan Ming Xu ◽  
Yong Qiang Wu ◽  
Hai Yan Gao

Conventional PID control system of Direct Current (DC) servo motor is only suitable for the system which Mathematical models can be precisely expressed [1] And it can’t meet the demand of the nonlinear and time-varying system. In the paper, a control system based on fussy-PID is proposed. The basic algorithm of the fussy-PID is introduced firstly. And then the design of the fussy-PID control system is introduced. The results of the experiments have shown that the fussy-PID control system improved the performance of the DC servo motor..


Author(s):  
Muhammad Bilal Khan

We present the design and overall development of an eight degrees of freedom (DOF) based Bioinspired Quadruped Robot (BiQR). The robot is designed with a skeleton made of cedar wood. The wooden skeleton is based on exploring the potential of cedar wood to be a choice for legged robots’ design. With a total weight of 1.19 kg, the robot uses eight servo motors that run the position control. Relying on the inverse kinematics, the control design enables the robot to perform the walk gait-based locomotion in a controlled environment. The robot has two main aspects: 1) the initial wooden skeleton development of the robot showing it to be an acceptable choice for robot design, 2) the robot’s applicability as a low-cost legged platform to test the locomotion in a laboratory or a classroom setting.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2251 ◽  
Author(s):  
Jikai Liu ◽  
Pengfei Wang ◽  
Fusheng Zha ◽  
Wei Guo ◽  
Zhenyu Jiang ◽  
...  

The motion state of a quadruped robot in operation changes constantly. Due to the drift caused by the accumulative error, the function of the inertial measurement unit (IMU) will be limited. Even though multi-sensor fusion technology is adopted, the quadruped robot will lose its ability to respond to state changes after a while because the gain tends to be constant. To solve this problem, this paper proposes a strong tracking mixed-degree cubature Kalman filter (STMCKF) method. According to system characteristics of the quadruped robot, this method makes fusion estimation of forward kinematics and IMU track. The combination mode of traditional strong tracking cubature Kalman filter (TSTCKF) and strong tracking is improved through demonstration. A new method for calculating fading factor matrix is proposed, which reduces sampling times from three to one, saving significantly calculation time. At the same time, the state estimation accuracy is improved from the third-degree accuracy of Taylor series expansion to fifth-degree accuracy. The proposed algorithm can automatically switch the working mode according to real-time supervision of the motion state and greatly improve the state estimation performance of quadruped robot system, exhibiting strong robustness and excellent real-time performance. Finally, a comparative study of STMCKF and the extended Kalman filter (EKF) that is commonly used in quadruped robot system is carried out. Results show that the method of STMCKF has high estimation accuracy and reliable ability to cope with sudden changes, without significantly increasing the calculation time, indicating the correctness of the algorithm and its great application value in quadruped robot system.


2013 ◽  
Vol 341-342 ◽  
pp. 1023-1027
Author(s):  
Hui Guo ◽  
Guo Chun Sun ◽  
Min Fan

An automobile power-train active mount system with a piezoelectric stack actuator is introduced. The influence caused by power-train to the body of the car is analyzed by means of parameter self-tuning fuzzy PID control, on which the simulating results are based. It turns out that this control scheme can restrain the influence better caused by power-train to the body of the car.


2014 ◽  
Vol 635-637 ◽  
pp. 1355-1359 ◽  
Author(s):  
Yan Wu ◽  
Li Hui Cheng ◽  
Guo Feng Fan ◽  
Cai Dong Wang

The kinematics equation of the handling robot with six free degrees has multiple sets inverse solution, and the robot system only can choose one optimized solutions to drive the robot to work. The kinematics model of the robot is established by D-H method, and the inverse solution is derived by an algebraic method. The best flexibility principle was introduced to determine a set of optimal solutions from 8 sets of feasible solutions. The correctness of robot inverse solution method is verified through a set of calculation examples.


Author(s):  
Javier Zaragoza ◽  
Grant Tinsley ◽  
Stacie Urbina ◽  
Katelyn Villa ◽  
Emily Santos ◽  
...  

Abstract Background A limited amount of research has demonstrated beneficial effects of caffeine and theanine supplementation for enhancement of mental performance. The purpose of this investigation was to determine whether the acute ingestion of a supplement containing caffeine, theanine and tyrosine improves mental and physical performance in athletes. Methods Twenty current or former male collegiate athletes (age: 20.5 ± 1.4 y; height: 1.82 ± 0.08 m; weight: 83.9 ± 12.6 kg; body fat: 13.8 ± 5.6%) completed this randomized, double-blind, placebo-controlled crossover trial. After familiarization, each participant completed two identical testing sessions with provision of a proprietary dietary supplement (SUP) containing caffeine theanine and tyrosine or a placebo (PL). Within each testing session, participants completed assessments of mental and physical performance before and after provision of SUP or PL, as well as after two rounds of exercise. Assessments were performed using a performance testing device (Makoto Arena) that evaluated multiple aspects of mental and physical performance in response to auditory and visual stimuli. Testing was performed both with the body in a static position and during dynamic movement. General linear models were used to evaluate the effects of SUP and PL on performance. Results Changes in movement accuracy during performance assessment were greater following SUP ingestion as compared to PL for both static and dynamic testing (SUP: + 0.4 to 7.5%; PL: − 1.4 to 1.4% on average; p < 0.05). For dynamic testing, the change in number of targets hit was higher and the change in average hit time was lower with SUP as compared to PL (p < 0.05). However, there were no differences between conditions for the changes in number of targets hit or average hit time during static testing. There were no differences in changes of subjective variables during either condition, and performance measures during the two rounds of exercise did not differ between conditions (p > 0.05). Discussion The present results indicate that a combination of a low-dose of caffeine with theanine and tyrosine may improve athletes’ movement accuracy surrounding bouts of exhaustive exercise without altering subjective variables. Based on this finding, supplementation with caffeine, theanine and tyrosine could potentially hold ergogenic value for athletes in sports requiring rapid and accurate movements. Trial registration NCT03019523. Registered 24 January 2017.


Sign in / Sign up

Export Citation Format

Share Document