scholarly journals A calibration-based method for interval reliability analysis of the multi-manipulator system

2021 ◽  
Vol 24 (1) ◽  
pp. 42-52
Author(s):  
Wei Wang ◽  
Shuangyao Liu ◽  
Jin Wang ◽  
Guodong Lu
2011 ◽  
Vol 199-200 ◽  
pp. 534-537
Author(s):  
Wei Tao Zhao ◽  
Dong Lin Yao ◽  
Wei Ping Zhang

Based on reliability analysis theory, traditional interval reliability analysis method is improved by take the smaller value of probability reliability and interval reliability as the results of reliability assessment, which makes the reliability assessment results more fit engineering cases. The improved model is applied to reliability assessment of small sample products with degradation characteristics, and results of assessment are compared with existing methods. A numerical example is considered, the results show that the assessment results by the method proposed in the paper is reasonable and believable.


1980 ◽  
Vol 17 (1) ◽  
pp. 154-167 ◽  
Author(s):  
Peter Franken ◽  
Arnfried Streller

Starting from the theory of point processes the concept of a process with an embedded marked point process is defined. It is shown that the known formula expressing the relation between the stationary and synchronous version of a regenerative process remains valid without the assumption of independence of cycles. General formulae for stationary availability and interval reliability of complex systems with repair are also obtained. In this way generalizations of Keilson's results for Markovian systems and Ross's results for systems with separately maintained elements are presented. The formulae are applied to a two-unit parallel system with a single repair facility.


Author(s):  
Alba Sofi ◽  
Giuseppe Muscolino ◽  
Filippo Giunta

Abstract Reliability assessment of linear discretized structures with interval parameters subjected to stationary Gaussian multicorrelated random excitation is addressed. The interval reliability function for the extreme value stress process is evaluated under the Poisson assumption of independent up-crossing of a critical threshold. Within the interval framework, the range of stress-related quantities may be significantly overestimated as a consequence of the so-called dependency phenomenon, which arises due to the inability of the classical interval analysis to treat multiple occurrences of the same interval variables as dependent ones. To limit undesirable conservatism in the context of interval reliability analysis, a novel sensitivity-based procedure relying on a combination of the interval rational series expansion and the improved interval analysis via extra unitary interval is proposed. This procedure allows us to detect suitable combinations of the endpoints of the uncertain parameters which yield accurate estimates of the lower bound and upper bound of the interval reliability function for the extreme value stress process. Furthermore, sensitivity analysis enables to identify the most influential parameters on structural reliability. A numerical application is presented to demonstrate the accuracy and efficiency of the proposed method as well as its usefulness in view of decision-making in engineering practice.


1980 ◽  
Vol 17 (01) ◽  
pp. 154-167 ◽  
Author(s):  
Peter Franken ◽  
Arnfried Streller

Starting from the theory of point processes the concept of a process with an embedded marked point process is defined. It is shown that the known formula expressing the relation between the stationary and synchronous version of a regenerative process remains valid without the assumption of independence of cycles. General formulae for stationary availability and interval reliability of complex systems with repair are also obtained. In this way generalizations of Keilson's results for Markovian systems and Ross's results for systems with separately maintained elements are presented. The formulae are applied to a two-unit parallel system with a single repair facility.


2014 ◽  
Vol 644-650 ◽  
pp. 4991-4994
Author(s):  
Jian Fang Zhou ◽  
Guang Ran Lu

In the calculation of the reliability of hydraulic, due to extensive uncertainties, there are lots of errors in probabilistic reliability analysis. In this paper, by comparing the non-probabilistic reliability index of different function, we get the advantages and disadvantages of one-dimensional optimization algorithm and method of Monte Carlo, and compare the functions of each variable of main beam to obtain the influence of the precision of the variables.


Author(s):  
Xiaoping Du

Traditional reliability analysis uses probability distributions to calculate reliability. In many engineering applications, some nondeterministic variables are known within intervals. When both random variables and interval variables are present, a single probability measure, namely, the probability of failure or reliability, is not available in general; but its lower and upper bounds exist. The mixture of distributions and intervals makes reliability analysis more difficult. Our goal is to investigate computational tools to quantify the effects of random and interval inputs on reliability associated with performance characteristics. The proposed reliability analysis framework consists of two components — direct reliability analysis and inverse reliability analysis. The algorithms are based on the First Order Reliability Method and many existing reliability analysis methods. The efficient and robust improved HL-RF method is further developed to accommodate interval variables. To deal with interval variables for black-box functions, nonlinear optimization is used to identify the extreme values of a performance characteristic. The direct reliability analysis provides bounds of a probability of failure; the inverse reliability analysis computes the bounds of the percentile value of a performance characteristic given reliability. One engineering example is provided.


2010 ◽  
Vol 163-167 ◽  
pp. 3034-3041
Author(s):  
Wei Zhao ◽  
J.K. Liu ◽  
Qiu Wei Yang

The structural reliability analysis with uncertainty-but-bounded parameters is considered in this paper. Each uncertain-but-bounded parameter is represented as an interval number or vector, an interval reliability index is defined and discussed. Due to the wide application of the Meshless method, it is used in structural stress and strain analysis. The target variable of requiring reliability analysis is estimated via Taylor expansion. Based on optimization theory and vertex solution theorem, the upper and lower bounds of the target variables are obtained, and also the interval reliability index. A typical elastostatics example is presented to illustrate the computational aspects of interval reliability analysis in comparison with the traditional probability method, it can be seen that the result calculated by the vertex solution theorem is consistent with that calculated by probability method.


Sign in / Sign up

Export Citation Format

Share Document