Effect of trans-10, cis-12 Conjugated Linoleic Acid on Calcium-Dependent Reactive Oxygen Species and Nitric Oxide Production and Nuclear Factor-κB Activation in Lipopolysaccharide-Stimulated RAW 264.7 Cells

2015 ◽  
Vol 32 (2) ◽  
pp. 135
Author(s):  
Tae-Won Choi ◽  
Byeong-Teck Kang ◽  
Ji-Houn Kang ◽  
Mhan-Pyo Yang
Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1324
Author(s):  
Su-Lim Kim ◽  
Hack Sun Choi ◽  
Yu-Chan Ko ◽  
Bong-Sik Yun ◽  
Dong-Sun Lee

Inflammation is the first response of the immune system against bacterial pathogens. This study isolated and examined an antioxidant derived from Lactobacillus fermentation products using cultured media with 1% beet powder. The antioxidant activity of the beet culture media was significantly high. Antioxidant activity-guided purification and repeated sample isolation yielded an isolated compound, which was identified as 5-hydoxymaltol using nuclear magnetic resonance spectrometry. We examined the mechanism of its protective effect on lipopolysaccharide (LPS)-induced inflammation of macrophages. 5-Hydroxymaltol suppressed nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. It also suppressed tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) in the messenger RNA and protein levels in LPS-treated RAW 264.7 cells. Moreover, it suppressed LPS-induced nuclear translocation of NF-κB (p65) and mitogen-activated protein kinase activation. Furthermore, 5-hydroxymaltol reduced LPS-induced reactive oxygen species (ROS) production as well as increased nuclear factor erythroid 2–related factor 2 and heme oxygenase 1 expression. Overall, this study found that 5-hydroxymaltol has anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophage cells based on its inhibition of pro-inflammatory cytokine production depending on the nuclear factor κB signaling pathway, inhibition of LPS-induced reactive oxygen species production, inhibition of LPS-induced mitogen-activated protein kinase induction, and induction of the nuclear factor erythroid 2–related factor 2/heme oxygenase 1 signaling pathway. Our data showed that 5-hydroxymaltol may be an effective compound for treating inflammation-mediated diseases.


2019 ◽  
Vol 18 (1) ◽  
pp. 89-95
Author(s):  
Lin Chih-Hung ◽  
Lan Chou-Chin ◽  
Chiu Valeria ◽  
Hsieh Po-Chun ◽  
Kuo Chan-Yen ◽  
...  

Danshensu, isolated from Salvia miltiorrhiza (Danshen), is known to have anti-inflammatory properties. Therefore danshen is extensively used in many nutraceutical formulations. Reactive oxygen species are essential for the development of hypoxia-induced inflammation. Generation of reactive oxygen species by infiltrating macrophages is common in various diseases such as cardiovascular disease, neurodegenerative disease, tumor, and aging. To explore the mechanism underlying the attenuation of inflammation, we used RAW 264.7 cells as a model and hypoxia as an inducer of inflammation. The results showed the protective mechanism of danshensu on reactive oxygen species production, hypoxia-inducible factor 1-alpha expression, c-Jun N-terminal kinase phosphorylation, nuclear translocation of nuclear factor kappa B, and inducible nitric oxide synthase expression following hypoxia in RAW 264.7 cells.


2013 ◽  
Vol 304 (5) ◽  
pp. E507-E515 ◽  
Author(s):  
Hisataka Kondo ◽  
Shoko Takeuchi ◽  
Akifumi Togari

Sympathetic signaling regulates bone resorption through receptor activator of nuclear factor-κB ligand (RANKL) expression via the β-adrenergic receptor (β-AR) on osteoblasts. Reactive oxygen species (ROS) are known as one type of osteoclast regulatory molecule. Here we show that an antioxidant, α-lipoic acid (α-LA), treatment prevent the β-adrenergic signaling-induced bone loss by suppressing osteoclastogenesis, and sympathetic signaling directly regulates osteoclastogenesis through β2-AR expressed on osteoclasts via intracellular ROS generation. In an in vitro study, the β-AR agonist isoprenaline increased intracellular ROS generation in osteoclasts prepared from bone marrow macrophages (BBMs) and RAW 264.7 cells. Isoprenaline enhanced osteoclastogenesis through β2-AR expressed on BMMs and RAW 264.7 cells. The antioxidant α-LA inhibited isoprenaline-enhanced osteoclastogenesis. Isoprenaline increased the expression of osteoclast-related genes such as nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1, tartrate-resistant acid phosphatase, and cathepsin K on osteoclasts. α-LA also inhibited isoprenaline-induced increases of these gene expressions. These in vitro results led to the hypothesis that β-adrenergic signaling directly stimulates osteoclastogenesis via ROS generation. In an in vivo study, isoprenaline treatment alone caused oxidative damage in local bone and reduced bone mass because of an increase in bone resorption, and, in α-LA-treated mice, isoprenaline did not increase tibial osteoclast number even though the RANKL-to-osteoprotegerin ratio increased. These in vitro and in vivo results indicate that β-adrenergic signaling, at least in part, directly stimulates osteoclastogenesis through β2-AR on osteoclasts via ROS generation.


Sign in / Sign up

Export Citation Format

Share Document