scholarly journals The Effect of Water to Cement Ratio on Early Age Properties of Cement Paste and Mortar by UPV

Author(s):  
Mohit Gupta ◽  
Dr. Arabinda Sharma ◽  
2013 ◽  
Vol 539 ◽  
pp. 14-18
Author(s):  
An Ming She ◽  
Wu Yao ◽  
Wan Cheng Yuan

The water distribution in hardened cement paste with different ages, water to cement ratio (w/c) and different cured methods were investigated by low field NMR. The transverse relaxation time, T2, was used as a parameter to describe the water phase constrained in pores. The results show that the T2 distributions of pastes in the early age are bimodal distribution. As the curing time increase, the T2 distribution peaks shift gradually to the short T2 values reflecting the decrease of mean pore dimension as well as the increase of specific surface area resulted from the gel products. In addition, the influences of initial water to cement ratio and cure methods on water distribution are occurred mainly during the early age. When cured to 28 days, the differences of water distribution in various samples are unconspicuous.


2021 ◽  
Author(s):  
Ahmed Mohammed ◽  
Kawan Ghafor ◽  
Wael Mahmood ◽  
Warzer Sarwar ◽  
Lajan Burhan

Abstract In this study, the effect of two water reducer polymers with smooth and rough surfaces on the compression strength of Ordinary Portland cement (OPC) was investigated. Three different initial ratios between water and cement (w/c) 0.5, 0.6, and 1 were used in this study. The amount of polymer contents varied from 0 to 0.06 % (%wt) for the cement paste with initial w/c of 0.5 and the polymer contents ranged between 0 to 0.16% (%wt) for the cement paste with initial w/c of 0.6 and 1 were investigated. SEM test was conducted to identify the impact of polymers on the behavior of cement paste. The compression strength of OPC cement was increased significantly with increasing the polymer contents. Because of a fiber net (netting) around cement paste particle was developed when the polymers were added to the cement paste which leads to decrease the void between the particles, binding the cement particles, therefore, increased the viscosity and compression strength of the cement rapidly. In this analysis, the hardness of cement paste with polymer contents has been evaluated and modeled using four different model technics. More environmentally sustainable construction, and lower cost than conventional building materials and early age strengths of the cement. To overcome the mentioned matter, this study aims to establish systematic multiscale models to predict the compression strength of cement paste containing polymers and to be used by the construction industry with no theoretical restrictions. For that purpose, a wide data a total of 280 tested cement paste modified with polymers, has been conducted, analyzed, and modeled. Linear, Nonlinear regression, M5P-tree, and Artificial Neural Network (ANN) technical approaches were used for the qualifications. In the modeling process, the most relevant parameters affecting the strength of cement paste, i.e. polymer incorporation ratio (0-0.16% of cement's mass), water-to-cement ratio (0.5-1), and curing ages (1 to 28 days). According to the correlation coefficient (R), mean absolute error and the root means a square error, the compression strength of cement paste can be well predicted in terms of w/c, polymer content, and curing time using four various simulation techniques. Among the used approaches and based on the training data set, the model made based on the Non-linear regression, ANN, and M5P-tree models seem to be the most reliable models. The sensitivity investigation concludes that the polymer content is the most dominating parameter for the prediction of the compression strength of cement paste with this data set.


2014 ◽  
Vol 584-586 ◽  
pp. 894-898
Author(s):  
Ping Zhang ◽  
Guan Guo Liu ◽  
Chao Ming Pang ◽  
Bing Du ◽  
Hong Gen Qin

The X ray computed tomography (X-CT) was applied to test the cracking resistance of cement paste, and the hydration process was monitored to study the effect of fly ash on the early age cracking performance. The results showed that the hydration heat reduced with the increase of fly ash under the same water-cement ratio. Within 24h, the porosity increased with time. The addition of fly ash increased the proportion of large holes and then changed the internal stress state. Using X-CT test method and by comparing the number of cracks, the sample with 20% FA was found to have the most serious cracks, whereas the sample with 30% FA had the best crack resistance.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3883
Author(s):  
Seong Ho Han ◽  
Yubin Jun ◽  
Tae Yong Shin ◽  
Jae Hong Kim

Curing by CO2 is a way to utilize CO2 to reduce greenhouse gas emissions. Placing early-age cement paste in a CO2 chamber or pressure vessel accelerates its strength development. Cement carbonation is attributed to the quickened strength development, and CO2 uptake can be quantitatively evaluated by measuring CO2 gas pressure loss in the pressure vessel. A decrease in CO2 gas pressure is observed with all cement pastes and mortar samples regardless of the mix proportion and the casting method; one method involves compacting a low water-to-cement ratio mix, and the other method comprises a normal mix consolidated in a mold. The efficiency of the CO2 curing is superior when a 20% concentration of CO2 gas is supplied at a relative humidity of 75%. CO2 uptake in specimens with the same CO2 curing condition is different for each specimen size. As the specimen scale is larger, the depth of carbonation is smaller. Incorporating colloidal silica enhances the carbonation as well as the hydration of cement, which results in contributing to the increase in the 28-day strength.


Sign in / Sign up

Export Citation Format

Share Document