scholarly journals CO2 Curing Efficiency for Cement Paste and Mortars Produced by a Low Water-to-Cement Ratio

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3883
Author(s):  
Seong Ho Han ◽  
Yubin Jun ◽  
Tae Yong Shin ◽  
Jae Hong Kim

Curing by CO2 is a way to utilize CO2 to reduce greenhouse gas emissions. Placing early-age cement paste in a CO2 chamber or pressure vessel accelerates its strength development. Cement carbonation is attributed to the quickened strength development, and CO2 uptake can be quantitatively evaluated by measuring CO2 gas pressure loss in the pressure vessel. A decrease in CO2 gas pressure is observed with all cement pastes and mortar samples regardless of the mix proportion and the casting method; one method involves compacting a low water-to-cement ratio mix, and the other method comprises a normal mix consolidated in a mold. The efficiency of the CO2 curing is superior when a 20% concentration of CO2 gas is supplied at a relative humidity of 75%. CO2 uptake in specimens with the same CO2 curing condition is different for each specimen size. As the specimen scale is larger, the depth of carbonation is smaller. Incorporating colloidal silica enhances the carbonation as well as the hydration of cement, which results in contributing to the increase in the 28-day strength.

2010 ◽  
Vol 02 (03n04) ◽  
pp. 199-215 ◽  
Author(s):  
SIAVASH GHABEZLOO

Evaluation of the poroelastic properties of oil-well cement paste is essential for prediction of the performance of the cement sheath during the life of a well. A multiscale homogenization model is used to evaluate the poroelastic properties of different classes of oil-well cement paste. The model has been calibrated in a previous work based on the results of a laboratory study on a hardened class G cement paste. A hydration model is used to evaluate the volume fractions of different microstructure phases of cement paste based on the chemical composition of clinker and the water-to-cement ratio. Typical chemical compositions of API class A to class H oil-well cements with their corresponding water-to-cement ratios are used to evaluate the poroelastic parameters such as drained bulk modulus, Biot coefficient, Skempton coefficient, etc. The results show that the difference in the chemical compositions of these cements has not an important effect on the variations of the poroelastic properties. Contrarily, the water-to-cement ratio has an important effect on the variations of these parameters.


1984 ◽  
Vol 42 ◽  
Author(s):  
M. Regourd

AbstractHigh strength cement pastes include hot pressed, autoclaved, impregnated low water/cement ratio, macrodefect free, ultrafine particles arrangement systems. The densification of the microstrucure is mainly related to a low porosity and to the formation of poorly crystalline hydrates. In composite systems like mortars and concretes, the interfacial bond between the cement paste and aggregates is moreover less porous and more finely crystallized than the normal “auréole de transition”.


2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


10.14311/1374 ◽  
2011 ◽  
Vol 51 (3) ◽  
Author(s):  
T. Ficker ◽  
D. Martišek ◽  
H. M. Jennings

. Seventy-eight graphs were plotted to describe and analyze the dependences of the height and roughness irregularities on the water-to-cement ratio and on the porosity of the cement hydrates. The results showed unambiguously that the water-to-cement ratio or equivalently the porosity of the specimens has a decisive influence on the irregularities of the fracture surfaces of this material. The experimental results indicated the possibility that the porosity or the value of the water-to-cement ratio might be inferred from the height irregularities of the fracture surfaces. It was hypothesized that there may be a similarly strong correlation between porosity and surface irregularity, on the one hand, and some other highly porous solids, on the other, and thus the same possibility to infer porosity from the surfaces of their fracture remnants.


2013 ◽  
Vol 539 ◽  
pp. 211-214 ◽  
Author(s):  
Li Wu Mo ◽  
Yang Deng ◽  
An Qun Lu ◽  
Min Deng

Blended expansive agents consisting of MgO and CaO were prepared by calcining the mixtures of dolomite and magnesite. The mineral phases and microstructures of expansive agent were examined by XRD and SEM. The expansion properties of cement pastes containing 5% and 6% of expansive agent as well as the microstructure of hydrated expansive agent in cement paste were investigated. Results indicated that the contents of MgO and CaO in the blended expansive agent could be adjusted by changing the mix proportion of dolomite and magnesite. All the cement pastes containing expansive agent produced rapid expansion. At the same addition dosage, irrespective of curing temperature, expansive agent containing higher content of MgO produced greater expansion in cement pastes, particularly at late age, which probably ascribes to the relatively slow hydration of MgO.


2010 ◽  
Vol 7 (1) ◽  
pp. 215-219
Author(s):  
R. Gopalakrishnan ◽  
D. Govindarajan

The present works reports the hydration processes of Portland cement through Electron paramagnetic resonance study. Cement pastes in a Water to cement ratio (W/C) of 0.4 at different hydration time intervals have been prepared. The g-factor of Fe(III) and Mn(II) impurities at different hydration ages has been related to changes in setting time of cement. Both gFe and gMn values are reach a maximum values at final setting time of OPC paste.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Ailian Zhang ◽  
Linchun Zhang

Cement mortar prisms were prepared with three different cement types and different water-to-cement ratios plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, these samples were submerged in 2% magnesium sulfate solution at 5°C and the visual appearance and strength development for every mortar were measured at intervals up to 1 year. Samples selected from the surface of prisms after 1-year immersion were examined by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The results show that mortars with sulfate resisting Portland cement (SRC) or sulphoaluminate cement (SAC) underwent weaker degradation due to the thaumasite form of sulfate attack than mortars with ordinary Portland cement (OPC). A lower water-to-cement ratio leads to better resistance to the thaumasite form of sulfate attack of the cement mortar. A great deal of thaumasite or thaumasite-containing materials formed in the OPC mortar, and a trace of thaumasite can also be detected in SRC and SAC mortars. Therefore, the thaumasite form of sulfate attack can be alleviated but cannot be avoided by the use of SAC or SRC.


2010 ◽  
Vol 163-167 ◽  
pp. 3174-3179
Author(s):  
Guo Wen Sun ◽  
Jin Yang Jiang ◽  
Yun Sheng Zhang ◽  
Cai Hui Wang

The method of the second intrusion mercury in MIP was used to investigate the pore characteristics of hardened cement paste with w/c ratio 0.23, 0.35 and 0.53, respectively, in order to research the quantitative relationship between transport properties and pore characteristics in cement-based composite materials. The results show the second intrusion mercury could well determine the effective pore structure parameters, and effective porosity accounts for 25% to 50% of total porosity in cement paste. At the same time, the existence of the first and second peak in pore size distribution curves is confirmed by MIP, such as, the first peak in hardened cement paste with water to cement ratio 0.53 is very distinct, however, with the decrease of water to cement ratio, the first peak gradually disappears. The pore diameter corresponding to the first and second peak is critical pore diameter of capillary pore and gel pore, respectively.


Sign in / Sign up

Export Citation Format

Share Document