To calculation of stresses in drawing of anisotropic viscoplastic material

2021 ◽  
pp. 84-88
Author(s):  
V. N. Chudin ◽  
A. V. Chernyaev ◽  
D. M. Tesakov
2007 ◽  
Vol 345-346 ◽  
pp. 685-688 ◽  
Author(s):  
Werner Ecker ◽  
Thomas Antretter ◽  
R. Ebner

Pressure casting dies are subjected to a large number of thermal as well as mechanical load cycles, which are leading to a characteristic thermally induced crack network on the die surface. As a typical representative for a die material the cyclic thermo-mechanical behavior of the hot work tool steel grade 1.2343 (X38CrMoV5-1) is investigated both experimentally as well as numerically. On the one hand the information from isothermal compression-tension tests is used in a subsequent analysis to calibrate a constitutive model that takes into account the characteristic combined isotropic-kinematic hardening/softening of the material. On the other hand the non-isothermal mechanical response of the material to thermal cycles is characterized by means of a periodic laser pulse applied to a small plate-like specimen which is cooled on the back. The residual stresses developing at the surface of the irradiated region of the specimen are determined ex-situ by means of X-ray diffraction. The obtained values agree well with the results of an accompanying finite-element study. This information is used to verify the calibrated constitutive model. The material law is finally used for the prediction of stresses and strains in a die.


2009 ◽  
Vol 53 (5) ◽  
pp. 1155-1191 ◽  
Author(s):  
John Papaioannou ◽  
George Karapetsas ◽  
Yannis Dimakopoulos ◽  
John Tsamopoulos

Author(s):  
Roland Mücke

MCrAlY coatings are applied in industrial gas turbines and aircraft engines to protect surfaces of hot gas exposed components from oxidation and corrosion at elevated temperature. Apart from oxidation resistance, coatings have to withstand cracking caused by cyclic deformation since coating cracks might propagate into the substrate material and thus limit the lifetime of the parts. In this context, the prediction of the coating maximum stress and the strain range during cyclic loading is important for the lifetime analysis of coated components. Analyzing the state of stress in the coating requires the application of viscoplastic material models. A coupled full-scale cyclic analysis of substrate and coating, however, is very expensive because of the different flow characteristics of both materials. Therefore, this paper proposes an uncoupled modeling approach, which consists of a full-scale cyclic analysis of the component without coating and a fast postprocessing procedure based on a node-by-node integration of the coating constitutive model. This paper presents different aspects of the coating viscoplastic behavior and their computational modeling. The uncoupled analysis is explained in detail and a validation of the procedure is addressed. Finally, the application of the uncoupled modeling approach to a coated turbine blade exposed to a complex engine start-up and shut-down procedure is shown. Throughout the paper bold symbols denote tensors and vectors, e.g., σ stands for the stress tensor with the components σij. The superscripts (.)S and (.)C symbolize the substrate and the coating, respectively, e.g., εthS stands for the tensor of substrate thermal strain. Further symbols are explained in the text.


1994 ◽  
Vol 356 ◽  
Author(s):  
S. Y. Tam ◽  
L. E. Scriven ◽  
H. K. Stolarski

AbstractA model is developed to predict the magnitude and pattern of stress due to drying of polymer films. This model combines diffusion-and-convection equation with large deformation elasto-viscoplasticity, utilizing concentration dependent elastic and viscoplastic material properties to better represent the behavior of drying thin films.The results show that the highest stress occurs at film surface where the concentration depletion is the highest. The magnitude of this stress is induced by increasing mass transfer across the film surface but reduced by increasing diffusion coefficient. The edge effect is significant but local, limited to about four film thicknesses. Similarly, change in substrate induces extra stress.


Sign in / Sign up

Export Citation Format

Share Document