Electricy Losses Management in Distribution Network as a Composition of Automated Meter Reading and Control System (AMRCS)

2021 ◽  
Vol 22 (4) ◽  
pp. 191-199
Author(s):  
T. T. Omorov ◽  
B. K. Takyrbashev ◽  
T. D. Koibagrov

The problem of electricity losses management in distribution electric networks (DEN) operating in conditions of asymmetry of currents and voltages is reviewed. As it is known, the asymmetry factor leads to significant losses of active power and, as a result, decreases the efficiency and technical and economic indicators of the DEN. The purpose of the control is to minimize technical energy losses in the distribution network based on the creation of an automatic control system (ACS) for the process of balancing a three-phase network in the composition of automated meter reading and control system (AMRCS). The latter are currently being widely implemented to automate information processes in DEN. However, AMRCS does not include in its composition technologies designed to solve the problem under review. A method is proposed for constructing a digital ACS controller, the main function of which is to maintain phase currents at the network input at a given level in real time. The concept of the method is based on the idea of the desired redistribution of electricity flows between the phases of the distribution network by appropriate switching of single-phase consumers (customers) so that the minimum spread of phase currents from their specified level is ensured. To achieve the goal of control, criterion functions are constructed that determine the qualitative indicators of the functioning of the ACS. Algorithms for the functioning of the digital controller and the formation of control actions on the subject have been developed. The latter are a digital code containing data on the coordinates of electricity meters of consumers of a three-phase network to be switched to another phase.

2021 ◽  
pp. 38-46
Author(s):  
T. Omorov ◽  
B. Takyrbashev ◽  
K. Zakiriaev ◽  
T. Koibagarov

This paper aims to address the problem of controlling the electricity flows in power distribution networks (PDN) operating under current and voltage unbalance. As is known, the unbalance factor is responsible for significant losses of active power and, therefore, is detrimental to the PDN efficiency and technical and economic performance. The purpose of control is to minimize technical power losses in the distribution network. This is to be achieved by building an information control system (ICS) for balancing a three-phase network as part of the automated metering and control system (AMCS). The latter is currently being widely adopted to automate information processes in PDNs. However, the AMCS does not include technologies for solving the problem in question. We propose an algorithm of the digital controller operation for the ICS. Its primary function is to maintain phase power at a given level in real-time. The algorithm concept is based on the idea of required redistribution of electricity flows between the phases of the distribution network by appropriately switching single-phase loads of consumers (users) to ensure a minimum spread of phase powers relative to their required level. To achieve the goal of control, we construct criterion functions that determine qualitative indices of the ICS operation and develop computational schemes for their minimization. Control actions to be generated by the digital controller and performed on the facility represent a digital code that contains data on the coordinates of three-phase network loads to be switched to another phase.


Author(s):  
T. T. Omorov ◽  
B. K. Takyrbashev ◽  
R. Ch. Osmonova

The asymmetrical distribution electric network is considered in the conditions of functioning of the automated meter reading and control system (AMRCS). The problem of identification of its mathematical model in a complex form which comes down to definition of phase shifts of the variables (currents, tension) defining an electric status of three-phase network is formulated. The method of its solution based on the mathematical ratios describing functional communications between state variables and use of algorithms of parameter optimization is offered. The realization of identification procedure of model of a distribution network is enabled with direct use of the basic data obtained on communication channels from subscriber's meters of the electric power. The method can be used for a solution of a number of functional tasks as a part of the AMRCS oriented for diagnostics of statuses of a trunk line and energy losses in a distribution network.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4930
Author(s):  
Francisco Elvis Carvalho Souza ◽  
Werbet Silva ◽  
Andrés Ortiz Salazar ◽  
José Paiva ◽  
Diego Moura ◽  
...  

In order to reduce the costs of implementing the radial position control system of a three-phase bearingless machine with split winding, this article proposes a driving method that uses only two phases of the system instead of the three-phase traditional one. It reduces from six to four the number of inverter legs, drivers, sensors, and current controllers necessary to drive and control the system. To justify the proposal, this new power and control configuration was applied to a 250 W machine controlled by a digital signal processor (DSP). The results obtained demonstrated that it is possible to carry out the radial position control through two phases, without loss of performance in relation to the conventional three-phase drive and control system.


2011 ◽  
Vol 328-330 ◽  
pp. 2023-2026
Author(s):  
Ying Xu ◽  
Tao Li

The oil-gas-water three-phase flow experimental apparatus in key laboratory of process monitoring and control in Tianjin University is a set of indoor small experimental device, which can simulate oil wells, simulate the pipeline transport of multiphase flow and study the experiment of multiphase flow. The device includes energy power dynamic systems, measurement pipelines systems, multiphase flow test pipelines system, control valves, sampling and control system platform. The software of the control system is mixed programming between the configuration software MCGS and the Visual Basic.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Changhai Peng ◽  
Kun Qian

Increasing in energy consumption, particularly with the ever-increasing growth and development of urban systems, has become a major concern in most countries. In this paper, the authors propose a cost-effective ZigBee-based building energy monitoring and control system (ZBEMCS), which is composed of a gateway, a base station, and sensors. Specifically, a new hardware platform for power sensor nodes is developed to perform both local/remote power parameter measurement and power on/off switching for electric appliances. The experimental results show that the ZBEMCS can easily monitor energy usage with a high level of accuracy. Two typical applications of ZBEMCS such as subentry metering and household metering of building energy are presented. The former includes lighting socket electricity, HVAC electricity, power electricity and special electricity. The latter includes household metering according to the campus’s main function zone and each college or department. Therefore, this system can be used for energy consumption monitoring, long-term energy conservation planning, and the development of automated energy conservation for building applications.


Sign in / Sign up

Export Citation Format

Share Document