scholarly journals Close-To-Nature Heuristic Design Principles for Future Urban Green Infrastructure

2021 ◽  
Vol 6 (4) ◽  
pp. 67-79
Author(s):  
Saruhan Mosler ◽  
Peter Hobson

The global nature-climate crisis along with a fundamental shift in world population towards cities and towns has sharpened the focus on the role of urban green infrastructure. Green infrastructure has the potential to deliver cost-effective, nature-based solutions to help mitigate problems of climate change as well as provide improved human well-being through the ecosystem services inherent in landscapes rich in biodiversity. The absence of under-pinning science, specifically complex systems science and ecosystem theory in the design and planning of urban green infrastructure, has limited the capacity of these landscapes to deliver ecosystem services and to effectively demonstrate natural resilience to the impacts of climate change. To meet future challenges of environmental uncertainty and social change, the design of urban green space should embrace an adaptive ecosystem-based approach that includes fully integrated participatory planning and implementation strategies founded on principles of close to nature science. Our article offers two models to inform green space planning: urban green space framework and sustainable urban community network. Both concepts provide the foundation for six ecosystem-based design principles. In a case study on Essex green infrastructure, UK, recommendations made by the Essex Climate Action Commission to transform land management practices are presented as examples of adopting principles of the ecosystem approach and nature-based science. Our article concludes by emphasising the importance of reconnecting society with nature in cities through close-to-nature design of urban green space to secure essential ecosystem services and to build resilience to the impacts of climate change.

2011 ◽  
Vol 243-249 ◽  
pp. 6842-6845
Author(s):  
Jian Zhang ◽  
Yan Hui Sui ◽  
Xue Biao Geng

Low-carbon city provide both opportunity and challenge for landscape architecture. Urban green space planning and design are the most important way to achieve the landscape adaptive to globe climate change. In this paper, we introduced importance and significance of urban green space in low-carbon landscape, and reviewed many new design solutions, such as construction of green infrastructure, protection of natural vegetation and ecosystems, use of phytoremediation and application of urban productive landscape. Via innovative design solution and ecological principle, landscape architects would create a substantially new aesthetics to ensure the survivance of humanity.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 813
Author(s):  
Hui Dang ◽  
Jing Li ◽  
Yumeng Zhang ◽  
Zixiang Zhou

Urban green spaces can provide many types of ecosystem services for residents. An imbalance in the pattern of green spaces leads to an inequality of the benefits of such spaces. Given the current situation of environmental problems and the basic geographical conditions of Xi’an City, this study evaluated and mapped four kinds of ecosystem services from the perspective of equity: biodiversity, carbon sequestration, air purification, and climate regulation. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) was used to obtain the partition groups of ecosystem services. The results indicate that first, the complexity of the urban green space community is low, and the level of biodiversity needs to be improved. The dry deposition flux of particulate matter (PM2.5) decreases from north to south, and green spaces enhance the adsorption of PM2.5. Carbon sequestration in the south and east is higher than that in the north and west, respectively. The average surface temperature in green spaces is lower than that in other urban areas. Second, urban green space resources in the study area are unevenly distributed. Therefore, ecosystem services in different areas are inequitable. Finally, based on the regionalization of integrated ecosystem services, an ecosystem services cluster was developed. This included 913 grid spaces, 12 partitions, and 5 clusters, which can provide a reference for distinct levels of ecosystem services management. This can assist urban managers who can use these indicators of ecosystem service levels for planning and guiding the overall development pattern of green spaces. The benefits would be a maximization of the ecological functions of green spaces, an improvement of the sustainable development of the city, and an improvement of people’s well-being.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 341
Author(s):  
Ralf-Uwe Syrbe ◽  
Ina Neumann ◽  
Karsten Grunewald ◽  
Patrycia Brzoska ◽  
Jiři Louda ◽  
...  

The quality of life in our cities critically depends on the intelligent planning and shaping of urban living space, in particular urban nature. By providing a wide range of ecosystem services (ES), urban nature essentially contributes to the well-being of city dwellers and plays a major role in avoiding common diseases through its positive impact on physical and mental health. Health is one of the most important factors underlying human welfare and is, thus, vital to sustainable development. The ES of urban green space provide other social-cultural functions alongside public health, for example by fostering environmental justice and citizenship participation. Thus, they should always be considered when searching for solutions to urban problems. The aim of this research was to determine the impact of green areas in three selected cities on the health and well-being of people by self-reporting of green areas’ visitors. To this end, we posed the research question: which types and characteristics of urban green space are most appreciated by city dwellers? Based on our findings, we have drawn up recommendations for practices to promote better living conditions. We have also pinpointed obstacles to and opportunities for leisure time activities as well as ways of supporting the public health of citizens.


Author(s):  
Esther J. Veen ◽  
E. Dinand Ekkel ◽  
Milan R. Hansma ◽  
Anke G. M. de Vrieze

Policymakers and urban designers strive to implement the increasing evidence about the positive association between urban green space (UGS) and health in policy. In Almere, The Netherlands, the Regenboogbuurt (“Rainbow Quarter”) neighbourhood is currently being revitalized. The research team was asked to deliver design principles for the improvement of UGS in this neighbourhood to benefit the health of its residents. However, robust studies that demonstrate what UGS criteria offer what particular benefit for what target group are scarce. This paper contributes to the need for more evidence-based UGS design by presenting the approach we used to develop UGS design principles for Regenboogbuurt. Demographic information, health statistics, residents’ opinions, and data about the current use of UGS were analysed to choose target groups and to formulate health benefit goals. We also developed a model for assessing the health benefits of UGS. For two age groups (those aged 10–24 and 40–60), stimulating physical health and social cohesion, respectively, were determined to be the goals of improving UGS. UGS design principles were then assessed based on the existing literature. These principles will be taken into account when this area is revitalized in 2021. Thus, there will be an opportunity to measure whether these design principles did indeed contribute to residents’ health.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 775 ◽  
Author(s):  
Victor Matasov ◽  
Luca Belelli Marchesini ◽  
Alexey Yaroslavtsev ◽  
Giovanna Sala ◽  
Olga Fareeva ◽  
...  

Urban green infrastructure plays an increasingly significant role in sustainable urban development planning as it provides important regulating and cultural ecosystem services. Monitoring of such dynamic and complex systems requires technological solutions which provide easy data collection, processing, and utilization at affordable costs. To meet these challenges a pilot study was conducted using a network of wireless, low cost, and multiparameter monitoring devices, which operate using Internet of Things (IoT) technology, to provide real-time monitoring of regulatory ecosystem services in the form of meaningful indicators for both human health and environmental policies. The pilot study was set in a green area situated in the center of Moscow, which is exposed to the heat island effect as well as high levels of anthropogenic pressure. Sixteen IoT devices were installed on individual trees to monitor their ecophysiological parameters from 1 July to 31 November 2019 with a time resolution of 1.5 h. These parameters were used as input variables to quantify indicators of ecosystem services related to climate, air quality, and water regulation. Our results showed that the average tree in the study area during the investigated period reduced extreme heat by 2 °C via shading, cooled the surrounding area by transferring 2167 ± 181 KWh of incoming solar energy into latent heat, transpired 137 ± 49 mm of water, sequestered 8.61 ± 1.25 kg of atmospheric carbon, and removed 5.3 ± 0.8 kg of particulate matter (PM10). The values of the monitored processes varied spatially and temporally when considering different tree species (up to five to ten times), local environmental conditions, and seasonal weather. Thus, it is important to use real-time monitoring data to deepen understandings of the processes of urban forests. There is a new opportunity of applying IoT technology not only to measure trees functionality through fluxes of water and carbon, but also to establish a smart urban green infrastructure operational system for management.


Urban Climate ◽  
2021 ◽  
Vol 39 ◽  
pp. 100962
Author(s):  
Yuan (Daniel) Cheng ◽  
James R. Farmer ◽  
Stephanie L. Dickinson ◽  
Scott M. Robeson ◽  
Burnell C. Fischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document