scholarly journals MERCERIZED URENA LOBATA FIBER EPOXY COMPOSITES: FIBER LOADING, ASPECT RATIO AND MECHANICAL PROPERTIES

2021 ◽  
Vol 20 (2) ◽  
pp. 73-91
Author(s):  
Uzondu Francis Nnamuzie
2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


2017 ◽  
Vol 24 (5) ◽  
pp. 731-738 ◽  
Author(s):  
Varun Mittal ◽  
Shishir Sinha

AbstractThe aim of this research was to study the feasibility of using wheat straw fiber with epoxy resin for developing natural fiber-polymer composites. For this purpose, the epoxy resin was reinforced with 5, 10, 15, 20, and 25 wt.% of the wheat straw fiber with the help of the hand lay-up technique. Further, in order to improve the composite characteristic, wheat straw fibers were treated with three different concentrations of alkali (1%, 3%, and 5%). The mechanical and water absorption properties of the treated fiber composites were characterized and compared with those of untreated fiber-filled epoxy composites. It was observed that the mechanical properties and water resistance were reduced with the increase in wheat straw fiber loading from 5 to 25 wt.%. Among the three levels of alkali treatment, the composite made with 3% alkali-treated fiber exhibited superior mechanical properties than the other untreated and treated fiber composites, which pointed to an efficient fiber-matrix adhesion. The scanning electron microscope was used to observe the surface features of the wheat straw fiber.


Author(s):  
K. Obi Reddy ◽  
C. Uma Maheswari ◽  
K. Ramakrishna Reddy ◽  
M. Shukla ◽  
E. Muzenda ◽  
...  

Author(s):  
Banisetti Manoj ◽  
Chandrasekar Muthukumar ◽  
Chennuri Phani Durga Prasad ◽  
Swathi Manickam ◽  
Titus I. Benjamin

The effects of micro cellulose reinforcement on the mechanical properties of epoxy composites were investigated. Micro cellulose were extracted from Hibiscuss sabdariffa fibers using the steam explosion technique and repeated chemical treatments. Reinforcing of epoxy resin with micro cellulosic fibers was done in particle form. Tensile, hardness and impact results revealed that mechanical properties of micro cellulose reinforced composites increases for 10%, 20% and 30% fiber loading and then decrease for 40% loading. Composite with 30% of micro cellulose enhanced the overall mechanical properties of composite, due to the enhanced fiber-matrix adhesion and micro cellulose reinforcement.


Sign in / Sign up

Export Citation Format

Share Document