BLACK ROOT ROT CAUSED BY PHOMOPSIS SCLEROTIOIDES VAN KEST. - THE MOST DESTRUCTIVE DISEASE OF GLASSHOUSE CUCUMBERS NEW TO POLAND

1985 ◽  
pp. 209-214
Author(s):  
B. Leski
Plant Disease ◽  
2016 ◽  
Vol 100 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Kuniaki Shishido ◽  
Hiroyuki Murakami ◽  
Daiki Kanda ◽  
Shin-ichi Fuji ◽  
Takeshi Toda ◽  
...  

The effects of the density of Phomopsis sclerotioides in soil and other environmental factors on black root rot of cucumber were investigated. Cucumber plants were grown in soil containing P. sclerotioides at 1, 10, 100, and 1000 CFU/g. Wilt incidence from 3 to 7 weeks after transplanting was strongly correlated with P. sclerotioides density in soil (P < 0.05). Root rot of squash rootstock occurred in soil with very low inoculum densities (0.1 CFU/g), and was strongly related to P. sclerotioides density (Y = −0.3x + 1.2, R2 = 0.743, P < 0.05) at 8 weeks after transplanting. Cucumber plants showed wilt symptoms in soil containing 1 CFU/g. Wilt symptoms in cucumber plants occurred 4 to 7 days earlier in soil at 22°C than in soil at 27 or 17°C. Root rot development could be predicted from the density of P. sclerotioides in soil and soil temperature. However, further studies on the effects of other environmental factors are required to test the linear model in commercial fields. This information is essential for determining the threshold pathogen density at which most control techniques, particularly those other than soil disinfection, will be effective.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 425-425 ◽  
Author(s):  
C. Cappelli ◽  
V. M. Stravato ◽  
G. Carannante ◽  
R. Parisella

During April 2002 to September 2003 in unheated plastic greenhouses located in Fondi and Sperlonga (Latium Region of central Italy), in which more than 100 ha of cucumber (Cucumis sativus L.) were cultivated, an unusual disease causing decay of roots and plant wilting was observed. Many of the most common cultivars showed susceptibility, and in some farms, severe economic losses occurred. Disease symptoms observed on young plants included stunting, wilting, black root rot, and marked reduction of root development where pseudosclerotial structures were produced. The degree of root symptoms was proportional to the wilting. During periods of high evapotranspiration, wilting was severe in plants at the early stages of disease development, and even lightly infected plants wilted rapidly. Symptoms resembled those caused by vascular wilt fungi and were generally more severe in greenhouses with poorly drained soils. Samples from each of four greenhouses were collected during different periods of the growing season. Each sampling unit consisted of five to eight root pieces that were surface disinfected in 0.1% HgCl2 for 30 s, rinsed in sterile water, placed on petri dishes containing potato dextrose agar (pH 5.5), and incubated for 7 days at 25°C. Phomopsis sclerotioides van Kesteren (1,2) (identification confirmed by R. A. Samson, Centraalbureau voor Schimmelcultures of Utrecht, the Netherlands) was consistently recovered from affected tissues. Subcultures of three isolates were prepared and evaluated for pathogenicity. The experiments were conducted in a greenhouse with a 12-h photoperiod at 25 to 32°C. Seven-week-old seedlings (20 representatives per isolate) of a susceptible hybrid were dipped for 2 min in an agar slurry suspension of the pathogen and then returned to pots. Within 4 to 5 weeks after inoculation, all plants inoculated with each P. sclerotioides isolate showed the same symptoms observed in the field and caused wilting and death of approximately 80% of the inoculated plants. P. sclerotioides was consistently reisolated from the symptomatic test plant, whereas the fungus was never isolated from control plants. Another experiment using naturally infested soil in comparison with sterilized soil confirmed the soilborne nature of the fungus and its pathogenicity. To our knowledge, this is the first report of P. sclerotioides on cucumber in Italy. According to the experience of farmers and agricultural consultants, the disease was first observed in the last 3 to 4 years in unheated plastic greenhouses. However, we cannot exclude the possibility that the disease may have been present in central Italy prior to our observations, since it can be misdiagnosed and the symptoms can be masked by symptoms of other diseases. For these reasons, an accurate monitoring of the pathogen is necessary to determine the magnitude of the problem and its impact on the industry. Management practices that include long-term crop rotation with nonsusceptible hosts, removal and destruction of infected crop debris, and steam soil sterilization are suggested to reduce the economic losses. References: (1) E. Punithalingam et al. No. 461 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, U.K., 1975. (2) H. A. Van Kesteren. Neth. J. Plant Pathol. 73:112, 1967.


2006 ◽  
Vol 72 (4) ◽  
pp. 220-227 ◽  
Author(s):  
Masahiro Shishido ◽  
Nanako Yoshida ◽  
Toshiyuki Usami ◽  
Tetsuo Shinozaki ◽  
Masanobu Kobayashi ◽  
...  

1993 ◽  
Vol 2 (2) ◽  
pp. 179-188
Author(s):  
Hanna Avikainen ◽  
Hilkka Koponen ◽  
Risto Tahvonen

Formaline, lobac P, sodium hypochlorite (NaOCl), Korsolin and Menno-Ter-forte were effective disinfectants in the control of damping-off (Pythium sp.) from peat substrate. Ipasept, Sanisept and Virkon S (1%) were shown ineffective against Pythium sp. in peat. Only formaline was effective in the control of black root rot (Phomopsis sclerotioides) from peat. In sand substrate P. sclerotioides could be eradicated also with sodium hypochlorite. Verticillium wilt (Verticillium dahliae) from peat substrate could be controlled with formaline, lobac P, sodium hypochlorite and Virkon S. Formaline and sodium hypochlorite were effective against Verticillium wilt in sand. Black stem rot (Didymella hryoniae) was susceptible to all disinfectants tested.


1973 ◽  
Vol 73 (3) ◽  
pp. 259-267 ◽  
Author(s):  
MARION H. EBBEN ◽  
F. T. LAST

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Farid Abd-El-Kareem ◽  
Ibrahim E. Elshahawy ◽  
Mahfouz M. M. Abd-Elgawad

Abstract Background Black root rot of strawberry plants caused by Rhizoctonia solani, Fusarium solani, and Pythium sp. is a serious disease in Egypt. Biocontrol agents have frequently proved to possess paramount and safe tools against many diseases. The impact of soil treatments with 3 Bacillus pumilus isolates on black root rot disease of strawberry plants caused by R. solani, F., and Pythium sp. under laboratory and field conditions was examined herein on the commonly used ‘Festival’ strawberry cultivar. To increase the bacterial adhesion and distribution on the roots, each seedling was dipped in bacterial cell suspension at 1 × 108 colony-forming units/ml of each separate bacterial isolate for 30 min then mixed with 5% Arabic gum. Results The tested B. pumilus isolates significantly reduced the growth area of these 3 fungi. The two bacterial isolates Nos. 2 and 3 reduced the growth area by more than 85.2, 83.6, and 89.0% for R. solani, F. solani, and Pythium sp., respectively. Likewise, the 3 bacterial isolates significantly (P ≤ 0.05) inhibited the disease under field conditions. Isolates Nos. 2 and 3 suppressed the disease incidence by 64.4 and 68.9% and disease severity by 65.3 and 67.3%, respectively. The fungicide Actamyl had effect similar to that of the 2 isolates. B. pumilus isolates significantly enhanced growth parameters and yields of strawberry plants; isolates Nos. 2 and 3 raised the yield by 66.7 and 73.3%, respectively. Conclusions Bacillus pumilus isolates could effectively manage the black rot disease in strawberry herein. Due to the significant impact of the root rot disease on strawberry yield, B. pumilus should be further tested to manage the disease on strawberry on large scale in Egypt.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alemayehu Dugassa ◽  
Tesfaye Alemu ◽  
Yitbarek Woldehawariat

Abstract Background Faba bean (Vicia faba L.) cultivation is highly challenged by faba bean black root rot disease (Fusarium solani) in high lands of Ethiopia. To ensure sustainable production of faba beans, searching for eco-friendly disease management options is necessary to curb the progress of the disease timely. The indigenous biocontrol agents that suit local environments may effectively strive with in-situ microorganisms and suppress local pathogen strains. This study aimed to screen antagonistic indigenous compatible Trichoderma and Pseudomonas strains against Fusarium solani. In the pathogenicity test, soil-filled pots were arranged in complete random block design and sown with health faba bean seeds. The effect of some fungicides was evaluated against Fusarium by food poisoning methods to compare with the biocontrol agents. The antagonistic efficacy of biocontrol agents and their compatibility was investigated on Potato dextrose agar medium. Results Fusarium solani AAUF51 strain caused an intense root rotting in faba bean plant. The effect of Mancozeb 80% WP at 300 ppm was comparable with Trichoderma and Pseudomonas strains against Fusarium. The mycelial growth of test the pathogen was significantly (P ≤ 0.05) reduced to 86.67 and 85.19% by Trichoderma harzianum AAUW1 and Trichoderma viridae AAUC22 strains in dual culture, respectively. The volatile metabolites of Pseudomonas aeruginosa AAUS31 (77.78%) found the most efficient in reducing mycelial growth of Fusarium followed by Pseudomonas fluorescens AAUPF62 (71.11%) strains. The cell-free culture filtrates of Pseudomonas fluorescens AAUPF62 and Pseudomonas aeruginosa AAUS31 were more efficient than the Trichoderma strain in reducing the growth of Fusarium isolates. There was no zone of inhibition recorded between Trichoderma harzianum AAUW1, Trichoderma viridae AAUC22, Pseudomonas aeruginosa AAUS31, and Pseudomonas fluorescens AAUPF62 strains, hence they were mutually compatible. Conclusions The compatible Trichoderma and Pseudomonas strains showed antagonistic potentiality that could be explored for faba bean protection against black root rot disease and might have a future dual application as biocontrol agents.


Sign in / Sign up

Export Citation Format

Share Document