INTERACTION BETWEEN ETHYLENE AND CARBON DIOXIDE ON CONTROLLED ATMOSPHERE STORAGE OF "BLANCA DE ARANJUEZ" PEARS

1989 ◽  
pp. 81-88 ◽  
Author(s):  
C. Merodio ◽  
J.L. De la Plaza
HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 512B-512
Author(s):  
Krista C. Shellie

Green mold, a predominant disease of citrus fruit, develops when spores of Penicillium digitatum infect extant wounds in fruit epidermal tissue. Development of green mold during shipping limits the distance grapefruit can be surface transported. The objective of this research was to evaluate whether altering the atmosphere during refrigerated storage could suppress development of green mold. In the first two experiments, growth of green mold was evaluated after fruit were stored in ultra-low oxygen (0.05 or 1 kPa) at 14, 16, or 18 °C for up to 21 days. In the last two experiments, grapefruit were stored for 14 or 21 d at 12, 13, or 14 °C in atmospheres containing 2, 5, or 10 kPa oxygen with or without 2, 5, 10, or 20 kPa carbon dioxide. In all experiments, grapefruit were inoculated with 10 or 20 μL of a spore suspension of P. digitatum. Decay progression after storage was monitored by measuring the diameter of the lesion in cm at the demarcated site of inoculation or by subjectively rating percent decayed fruit surface area. Grapefruit not inoculated with P. digitatum had no visible symptoms of green mold. Grapefruit stored under controlled atmosphere had less fruit surface covered with mycelium (5% to 64%) than grapefruit stored in air. Inoculated grapefruit stored in 0.05 kPa oxygen for up to 14 d at 14 or 18 °C had no visible symptoms of green mold upon removal from cold storage, but developed a characteristic green mold lesion after 5 additional days of storage in air at ambient temperature. Results suggest that refrigerated controlled-atmosphere storage combined with wax and a fungicide can enhance control of green mold during shipping.


1992 ◽  
Vol 117 (2) ◽  
pp. 260-264 ◽  
Author(s):  
Richard B. Smith

Strawberries (Fragaria × ananassa Duch.) cv. Redcoat were stored at several temperatures and for various intervals in controlled atmospheres (CA) containing 0% to 18% CO2 and 15% to 21% 02. Bioyield point forces recorded on the CA-stored fresh fruit indicated that the addition of CO2 to the storage environment enhanced fruit firmness. Fruit kept under 15% CO2 for 18 hours was 48% firmer than untreated samples were initially. Response to increasing CO2 concentrations was linear. There was no response to changing 02 concentrations. Maximum enhancement of firmness was achieved at a fruit temperature of 0C; there was essentially no enhancement at 21C. In some instances, there was a moderate firmness enhancement as time in storage increased. Carbon dioxide acted to reduce the quantity of fruit lost due to rot. Fruit that was soft and bruised after harvest became drier and firmer in a CO2-enriched environment.


2017 ◽  
Vol 55 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Gustavo Henrique de Almeida Teixeira ◽  
Leandra Oliveira Santos ◽  
Luis Carlos Cunha Júnior ◽  
José Fernando Durigan

2015 ◽  
Vol 25 (5) ◽  
pp. 639-644 ◽  
Author(s):  
Manish K. Bansal ◽  
George E. Boyhan ◽  
Daniel D. MacLean

Vidalia onions (Allium cepa) are a branded product of southeastern Georgia marketed under a federal marketing order. They are short-day, yellow onions with a Granex shape that are susceptible to a number of diseases postharvest, limiting the amount of time they can be marketed. Postharvest treatments and storage methods can help extend their marketability. Thus, the objective of this study was to evaluate these postharvest treatments and storage conditions on quality of three Vidalia onion varieties: ‘WI-129’, ‘Sapelo Sweet’, and ‘Caramelo’. All varieties were undercut, then either harvested immediately (zero cure), field cured (2 days), or forced-air heat cured (3 days at ≈37 °C) when judged mature. ‘WI-129’, ‘Sapelo Sweet’, and ‘Caramelo’ represent early, midseason, and late varieties, respectively. Bulbs were then sorted and stored in refrigerated storage [0–1 °C, 70% relative humidity (RH)], sulfur dioxide (SO2) (1000 mg·L−1 in 2010 and 5000 mg·L−1 in 2011, one time fumigation) followed by refrigeration, ozone (O3 (0.1–10 mg·L−1; continuous exposure, 0–1 °C, 70% RH), or controlled-atmosphere storage [3% oxygen (O2), 5% carbon dioxide (CO2), 0–1 °C, 70% RH]. After 2 and 4 months, bulbs were removed from storage, and evaluated after 1 and 14 days for quality and incidence of disorders. ‘Caramelo’ had the lowest percent marketable onions after curing in 2010, while ‘WI-128’ had the lowest percent marketable onions in 2011. There was a rain event immediately before harvesting ‘Caramelo’ that may have contributed to low marketability in 2010. Heat curing improved marketability for ‘Sapelo Sweet’ and ‘WI-129’ in 2010 compared with no curing. In 2011, heat curing resulted in more marketable onions for ‘Sapelo Sweet’ compared with no curing. Curing had no effect on ‘Caramelo’ in 2011 and field curing had the greatest percent marketable onions for ‘WI-129’ in 2011. In 2010, controlled-atmosphere storage had more marketable onions compared with SO2 for ‘Caramelo’ and was better than simple refrigeration or O3 with ‘WI-129’. In 2011 refrigeration, controlled-atmosphere storage, and O3 were all better than SO2 with ‘Caramelo’. ‘Sapelo Sweet’ and ‘WI-129’, on the other hand in 2011, had better storage with SO2 compared with other storage methods. Onions stored for 2 months had 32% and 17% more marketable onions after removal compared with 4 months of storage regardless of storage conditions for 2010 and 2011, respectively. Poststorage shelf life was reduced by about one-third, 14 days after removal from storage regardless of the storage conditions.


1968 ◽  
Vol 8 (34) ◽  
pp. 630
Author(s):  
KJ Scott ◽  
RBH Wills ◽  
EA Roberts

Red Jonathan apples were stored at 32�F in 5 per cent carbon dioxide and 16 per cent oxygen in the presence of calcium chloride. The incidence of breakdown decreased linearly as weight loss was increased. Thus carbon dioxide and oxygen levels, and weight loss may all affect the incidence of breakdown in apples in controlled atmospheres. Without information on weight loss to ensure that there is no confounding, conclusions about the effects of carbon dioxide and oxygen may be misleading,


Sign in / Sign up

Export Citation Format

Share Document