SIMULATION OF THE EFFECTS OF PHOTOPERIOD AND LIGHT INTENSITY ON THE GROWTH OF POTATO PLANTLETS CULTURED PHOTOAUTOTROPHICALLY IN VITRO

1996 ◽  
pp. 622-627 ◽  
Author(s):  
G. Niu ◽  
T. Kozai ◽  
H. Mikami
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Satoko Kakino ◽  
Shinya Kushibiki ◽  
Azusa Yamada ◽  
Zenzo Miwa ◽  
Yuzo Takagi ◽  
...  

The applicability of arterial pulse oximetry to dental pulp was demonstrated using in vitro and in vivo measurements. First, porcine blood of known oxygen saturation (SO2) was circulated through extracted human upper incisors, while transmitted-light plethysmography was performed using three different visible wavelengths. From the light intensity waveforms measured in vitro, a parameter that is statistically correlated to SO2 was calculated using the pulsatile/nonpulsatile component ratios of two wavelengths for different SO2. Then, values were measured in vivo for living incisors, and the corresponding SO2 values were calculated using the results of in vitro measurements. The estimated SO2 values of the upper central incisors measured in vivo were from 71.0 to 92.7%. This study showed the potential to measure the oxygen saturation changes to identify the sign of pulpal inflammation.


2012 ◽  
Vol 14 (1) ◽  
pp. 19 ◽  
Author(s):  
Zulkarnain Zulkarnain ◽  
Lizawati Lizawati

The aim of this study was to develop an efficient method for the induction of embryogenic callus formation for in vitro propagation ofjatropha. Plant materials used were 30-days old in vitro seedlings, cut into hypocotyl and cotyledon (lower, middle and upper) sections.Medium used was MS composition supplemented with vitamins, 3% sucrose, 0.7% agar at pH 5.8 ± 1, and 2,4-D (0, 1, 2, 3, 4 dan5 mg l-1). Cultures were kept at temperature of 25 ± 1 0C with 50 μmol m-2 s-1 light intensity and 16-h photoperiod. The results indicated thatthe rate of callus formation depended on the source of explant, the application of 2,4-D, and the interaction of both. The fastest callusproliferation (2.33 days following initiation) was obtained on cotyledon explants cultured on medium without 2,4-D. The explant sourcesand 2,4-D concentrations also showed significant effect on the percentage of explant forming callus. The most callus formation (88.33%)was obtained on middle cotyledon cultured on 3 mg l-1 2,4-D, whereas the fewest (6.84%) was found on upper cotyledon cultured on mediumwithout 2,4-D. The colour of callus was dominated by white, light yellow, cream and brown with mostly compact structure, particularly onhypocotyl cultured on medium without 2,4-D. The texture of callus formed on hypocotyl treated with up to 4 mg l -1 2,4-D was dominatedby coarse appearance. In contrast, majority of callus proliferated on hypocotyl treated with 5 mg l -1 2,4-D or cotyledon treated with orwithout 2,4-D produced callus with smooth texture %.


2018 ◽  
Vol 12 (2) ◽  
pp. 117
Author(s):  
Cecília Moreira Serafim ◽  
Arlene Santisteban Campos ◽  
Priscila Bezerra Dos Santos Melo ◽  
Ana Cecília Ribeiro de Castro ◽  
Ana Cristina Portugal Pinto de Carvalho

Faced with the demand for plants potted for their foliage, Anthurium maricense is seen as a viable option. However, most of the studies on obtaining micropropagated plantlets are for A. andraeanum, with nothing yet reported for A. maricense. The aim of this study therefore, was to evaluate the effect of four cytokinins in different concentrations, on the in vitro induction of shoots from nodal segments of A. maricense. The experimental design was completely randomised in a 4 x 4 factorial scheme, with four cytokinins (BAP, ZEA, CIN and 2iP) and 4 concentrations (0, 2.22, 4.44 and 6.66 μM), for a total of 16 treatments, with 6 replications of five test tubes, and using one nodal segment. Cultures were kept in a growth room at 25 ± 2°C, a photoperiod of 16 h and a light intensity of 30 μmolm-2 s-1 for 60 days. After this period, the number of shoots formed per node was evaluated. The addition of a cytokinin to the culture medium was determinant for the in vitro regeneration of shoots in A. maricense. The greatest estimated number of shoot formations in A. maricense were obtained in the culture media containing ZEA (3.87) and BAP (3.30), both at concentration of 6.66 μM.


1972 ◽  
Vol 50 (12) ◽  
pp. 2673-2682 ◽  
Author(s):  
William H. Harvey ◽  
James D. Caponetti

Intact, set III, cinnamon fern cataphyll and frond primordia, which were shown to have no predisposition to fertility in situ, produced sporangia when excised and cultured under sterile conditions in Knudson's medium supplemented with various levels of sucrose and maintained on 11 different regimens of light, darkness, and temperature for 10 weeks. Increasing levels of sucrose resulted in increased fertility under all environmental conditions, but the highest percentage of fertility was obtained under conditions of continuous dark at 26 °C. As the length of the light phase of the photoperiods decreased, a progressive increase in induction of fertile leaves was observed, suggesting that periods of long light exposure are inhibitory to the initiation of sporangia. Conversely, as the light intensity was increased, an inhibition of sporophyll differentiation occurred. Sporangia excised from dark-induced sporophylls and cultured in the light produced viable spores which germinated yielding haploid gametophytes that ultimately produced sporophytes.


2019 ◽  
Vol 14 (1) ◽  
pp. 349-357 ◽  
Author(s):  
Shubin Li ◽  
Lili Zhou ◽  
Sipan Wu ◽  
Li Liu ◽  
Meng Huang ◽  
...  

AbstractThis study examines the effects of light emitting diodes (LEDs) on tissue culture proliferation of Acacia melanoxylon plantlets among five different clones (FM1, FM2, FM4, FM5, and FM10). Shoot bud apex cuttings were transplanted onto Murashige and Skoog basal medium containing 0.1 mg L-1 6-benzyladenine and 0.5 mg L-1 naphthalene acetic acid and cultured in vitro for 40 days. Root growth was studied under different light intensities and photoperiods ex vitro. The bud proliferation coefficient was greatest under a light intensity of 45 μmol m-2 s-1 photosynthetic photon flux and photoperiod of 16 h light, but decreased as the light intensity increased. However, the greatest light intensity was beneficial for the growth of robust plantlets. Plantlets exposed to red and blue LED combinations grew tall and green, with a small number of roots. Plantlets also grew taller and some roots expanded under the longer photoperiod. Increased light intensity had positive effects on root number and rooting rate, and prolonged light greatly increased root number. Therefore, lower light intensity and a short photoperiod were beneficial for bud proliferation, while red/blue LED combinations, increased light intensity, and longer light illumination were beneficial for plantlet growth and root growth of Acacia melanoxylon.


Sign in / Sign up

Export Citation Format

Share Document