ETHYLENE PRODUCTION OF 'HAYWARD' KIWIFRUIT AFTER ULTRA LOW OXYGEN OR CONTROLLED ATMOSPHERE STORAGE

1997 ◽  
pp. 535-540 ◽  
Author(s):  
M.D.C. Antunes ◽  
E.M. Sfakiotakis
2014 ◽  
Vol 86 (1) ◽  
pp. 485-494 ◽  
Author(s):  
CRISTIANO ANDRÉ STEFFENS ◽  
CASSANDRO V.T. DO AMARANTE ◽  
ERLANI O. ALVES ◽  
AURI BRACKMANN

The objective of this study was to evaluate the effect of controlled atmosphere (CA) on quality preservation of ‘Laetitia’ plums, mainly on internal breakdown, in order to determine the best CA storage conditions. Two experiments were carried out one in 2010, and another in 2011. In 2010, besides cold storage (CS; 21.0 kPa O2 + 0.03 kPa CO2), the fruits were stored under the following CA conditions (kPa O2+kPa CO2): 1+3, 1+5, 2+5, 2+10, and 11+10. In 2011, the fruits were stored under CS and CA of 1+0, 1+1, 2+1, and 2+2. The fruit stored under different CA conditions had lower respiration and ethylene production, better preservation of flesh firmness, texture and titratable acidity, lower skin red color, and lower incidence of skin cracking than the fruit in CS. In 2010, the fruit under CA with 2+5, 1+5, and 1+3 had a pronounced delay in ripening, although it exhibited a high incidence of internal breakdown. In 2011, the CA conditions with 2+1 and 2+2 provided the best delay in ripening and a reduced incidence of internal breakdown. The best CA condition for cold storage (at 0.5°C) of ‘Laetitia’ plums is 2 kPa O2 + 2 kPa CO2.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 512B-512
Author(s):  
Krista C. Shellie

Green mold, a predominant disease of citrus fruit, develops when spores of Penicillium digitatum infect extant wounds in fruit epidermal tissue. Development of green mold during shipping limits the distance grapefruit can be surface transported. The objective of this research was to evaluate whether altering the atmosphere during refrigerated storage could suppress development of green mold. In the first two experiments, growth of green mold was evaluated after fruit were stored in ultra-low oxygen (0.05 or 1 kPa) at 14, 16, or 18 °C for up to 21 days. In the last two experiments, grapefruit were stored for 14 or 21 d at 12, 13, or 14 °C in atmospheres containing 2, 5, or 10 kPa oxygen with or without 2, 5, 10, or 20 kPa carbon dioxide. In all experiments, grapefruit were inoculated with 10 or 20 μL of a spore suspension of P. digitatum. Decay progression after storage was monitored by measuring the diameter of the lesion in cm at the demarcated site of inoculation or by subjectively rating percent decayed fruit surface area. Grapefruit not inoculated with P. digitatum had no visible symptoms of green mold. Grapefruit stored under controlled atmosphere had less fruit surface covered with mycelium (5% to 64%) than grapefruit stored in air. Inoculated grapefruit stored in 0.05 kPa oxygen for up to 14 d at 14 or 18 °C had no visible symptoms of green mold upon removal from cold storage, but developed a characteristic green mold lesion after 5 additional days of storage in air at ambient temperature. Results suggest that refrigerated controlled-atmosphere storage combined with wax and a fungicide can enhance control of green mold during shipping.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 469d-469
Author(s):  
Cynthia L. Barden

`Ginger Gold' is a high-quality summer apple with potential for processing and fresh markets. Although summer cultivars typically exhibit poor storage quality, data from three seasons indicate that storage potential is high for `Ginger Gold' in low-O2 controlled atmosphere storage. In 1995, fruit harvested 25 Aug. (85N) were stored in air (0 °C), 3% O2/<2% CO2 (0 °C) or 0.7% O2/1% CO2 (0 °C) for 4 or 7 months. After 4 months, firmness of fruit stored in air, 3% O2 and 0.7% O2 were 53N, 67N, and 80N, respectively. After 7 months, apples stored in air were soft (45N) and had excessive decay (55%), cracking (48%), and breakdown (61%). However, fruit stored in 0.7% O2 were of good quality (76N, 4% decay, 4% cracking, and no breakdown). No low-oxygen injury occurred. Apples were harvested on 14, 21 and 28 Aug. 1996 (85N, 80N, and 76N, respectively) and stored in air (0(C), 1.5% O2/1% CO2 (0(C), 1% O2/1% CO2 (0 °C) or 0.7% O2/1% CO2 (0 °C). Soluble solids were (9.5 at harvest, with starch scores of 3.5–4.5. After 2 months in air the firmness began to decrease rapidly and after 4 months ranged from 49–62N. Apples stored for 4 months in CA (≤1% O2) maintained firmness >70N. In 1997, fruit were harvested 14, 21, 28 Aug. and 4 Sept. (102, 96, 89, and 82N, respectively and 12–13.3 °Brix). After 4 months in CA, fruit were still of high quality (>83N, > 13.2 °Brix).


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 766D-766
Author(s):  
Hidemi Izumi ◽  
Nathanee P. Ko ◽  
Alley E. Watada

Quality and physiology of carrot shreds were monitored during storage in air, low O2 (0.5%, 1%, and 2%), or high CO2 (3%, 6%, and 10%) at 0, 5, and 10C to evaluate the response to controlled-atmosphere (CA) storage. Oxygen uptake and CO2 production from respiration were reduced under low-O2 or high-CO2 atmosphere, the reduction being greater at lower O2 and higher CO2 levels. The respiratory quotient was about 1 with samples in air, more than 1 in low-O2, and less than 1 in high-CO2 atmosphere during storage at all temperatures. No differences were found in ethylene production, which were less than 0.2 μl·kg–1·h–1 with all samples. The CA containing 0.5% O2 and 10% CO2 reduced weight loss and formation of white-colored tissue and decreased pH, but did not affect microbial count and texture at all temperatures. Off-odor and black root rot were not detected in both CA and air atmospheres.


Sign in / Sign up

Export Citation Format

Share Document