EFFECT OF IRRIGATION WATER REDUCTION STRATEGIES ON QUALITY AT HARVEST AND DURING STORAGE OF IN-SHELL ALMONDS

2010 ◽  
pp. 251-259 ◽  
Author(s):  
R. Cornacchia ◽  
M.L. Amodio ◽  
G. Colelli ◽  
P.A.N. Tortosa
2005 ◽  
Vol 71 (2) ◽  
pp. 746-753 ◽  
Author(s):  
Rebecca Montville ◽  
Donald Schaffner

ABSTRACT Food-borne disease outbreaks linked to the consumption of raw sprouts have become a concern over the past decade. A Monte Carlo simulation model of the sprout production process was created to determine the most-effective points for pathogen control. Published literature was reviewed, and relevant data were compiled. Appropriate statistical distributions were determined and used to create the Monte Carlo model with Analytica software. Factors modeled included initial pathogen concentration and prevalence, seed disinfection effectiveness, and sampling of seeds prior to sprouting, sampling of irrigation water, or sampling of the finished product. Pathogen concentration and uniformity of seed contamination had a large effect on the fraction of contaminated batches predicted by the simulation. The model predicted that sprout sampling and irrigation water sampling at the end of the sprouting process would be more effective in pathogen detection than seed sampling prior to production. Day of sampling and type of sample (sprout or water) taken had a minimal effect on rate of detection. Seed disinfection reduced the proportion of contaminated batches, but in some cases it also reduced the ability to detect the pathogen when it was present, because cell numbers were reduced below the detection limit. Both the amount sampled and the pathogen detection limit were shown to be important variables in determining sampling effectiveness. This simulation can also be used to guide further research and compare the levels of effectiveness of different risk reduction strategies.


2020 ◽  
Vol 83 (6) ◽  
pp. 1072-1087
Author(s):  
J. L. BANACH ◽  
H. J. van der FELS-KLERX

ABSTRACT Irrigation water can be a source of pathogenic contamination of fresh produce. Controlling the quality of the water used during primary production is important to ensure food safety and protect human health. Several measures to control the microbiological quality of irrigation water are available for growers, including preventative and mitigation strategies. However, clear guidance for growers on which strategies could be used to reduce microbiological contamination is needed. This study evaluates pathogenic microorganisms of concern in fresh produce and water, the microbiological criteria of water intended for agricultural purposes, and the preventative and mitigative microbial reduction strategies. This article provides suggestions for control measures that growers can take during primary production to reduce foodborne pathogenic contamination coming from irrigation water. Results show that controlling the water source, regime, and timing of irrigation may help to reduce the potential exposure of fresh produce to contamination. Moreover, mitigation strategies like electrolysis, ozone, UV, and photocatalysts hold promise either as a single treatment, with pretreatments that remove suspended material, or as combined treatments with another chemical or physical treatment(s). Based on the literature data, a decision tree was developed for growers, which describes preventative and mitigation strategies for irrigation-water disinfection based on the fecal coliform load of the irrigation water and the water turbidity. It helps guide growers when trying to evaluate possible control measures given the quality of the irrigation water available. Overall, the strategies available to control irrigation water used for fresh produce should be evaluated on a case-by-case basis because one strategy or technology does not apply to all scenarios. HIGHLIGHTS


2010 ◽  
Author(s):  
Michael T. Sliter ◽  
Scott A. Withrow ◽  
Michelle H. Balzer ◽  
Michelle H. Brodke ◽  
Jennifer Z. Gillespie ◽  
...  
Keyword(s):  

2011 ◽  
Author(s):  
Erin E. Bonar ◽  
Harold Rosenberg ◽  
Erica Hoffmann ◽  
Shane W. Kraus ◽  
Elizabeth Kryszak ◽  
...  

2020 ◽  
Vol 0 (2) ◽  
pp. 21-25
Author(s):  
Nikolay Dubenok ◽  
Andrey Novikov ◽  
Sergei Borodychev ◽  
Maria Lamskova

At the stage of water treatment for irrigation systems, the efficiency capture coarse and fine mechanical impurities, as well as oil products and organic compounds affects the reliability of the equipment of the irrigation network and the safety of energy exchange processes in irrigated agricultural landscapes. The violation of work irrigation system can cause disruptions in irrigation schedules of agricultural crops, crop shortages, degradation phenomena on the soil and ecological tension. For the combined irrigation system, a water treatment unit has been developed, representing a hydrocyclone apparatus with a pipe filter in the case. For the capacity of 250 m3/h the main geometrical dimensions of hydrocyclone have been calculated. To organize the capture petroleum products and organic compounds, it has been proposed a modernization of a hydrocyclone unit, consisting in dividing the cylindrical part of the apparatus into two section. The first is section is for input irrigation water, the second one is for additional drainage of clarified irrigation water after sorption purification by the filter, placed on the disk and installed coaxially with the drain pipe and the pipe filter.


Sign in / Sign up

Export Citation Format

Share Document