IRRIGATION PERFORMANCE INDICATORS FOR BEST IRRIGATION MANAGEMENT IN AN IRRIGATION DISTRICT

2011 ◽  
pp. 521-528
Author(s):  
J. Roldán ◽  
M. Díaz ◽  
M.F. Moreno
Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 841 ◽  
Author(s):  
Coppola ◽  
Dragonetti ◽  
Sengouga ◽  
Lamaddalena ◽  
Comegna ◽  
...  

: This paper mainly aims to illustrate an irrigation management tool to simulate scheduling of district-level water needs over the course of an irrigation season. The tool is mostly based on a daily model for simulating flow of water (and solutes) in heterogeneous agri-environmental systems (called FLOWS-HAGES). The model produces information on the daily evolution of: soil water contents and pressure potentials in the soil profile; water uptake and actual evapotranspiration; stress periods for each crop; return fluxes to the groundwater and their quality in terms of solute concentrations (e.g., nitrates). FLOWS-HAGES provides a daily list of hydrants to be operated according to water or crop-based criteria. The daily optimal sequence of hydrant use may thus be established by passing the volumes to be delivered on to the model for simulating the hydraulics of the irrigation network, in order to ensure that the discharges flowing inside the network of distribution pipes are delivered under optimal pressure head distribution in the system. All the above evaluations can be carried out in a stochastic framework to account for soil heterogeneity and climate changes. To illustrate the potential of FLOWS-HAGES, a case study was considered for a selected sector of the Irrigation District 10 in the “Sinistra Ofanto” irrigation system (southern Italy, Apulia region). In a 139 ha area (Sector 6 of the Irrigation District), soil profiles were analyzed for characterization of hydraulic properties variability. Hydraulic properties were determined by a combination of field and laboratory measurements. Model simulations were validated by comparing soil water storage simulated and measured by a sensor based on electromagnetic induction technique. Irrigation water volumes and frequency calculated by the model were compared to the volumes actually supplied by the farmers. Compared to the farmers behavior, the model simulates more frequent irrigations with lower irrigation volumes. Finally, some indexes of irrigation performance were calculated for each farm under study. The resulting maps provide useful information on the spatial distribution of farmer behavior, indicating the abuse or underuse of water as well as the fraction of the water lost by drainage following the irrigation method applied.


1993 ◽  
Vol 32 (2) ◽  
pp. 226-228
Author(s):  
Zakir Hussain

The book; under review provides a valuable account of the issues and factors in managing the irrigation system, and presents a lucid and thorough discussion on the performance of the irrigation bureaucracies. It comprises two parts: the first outlines the factors affecting irrigation performance under a wide range of topics in the first five chapters. In Chapter One, the authors have attempted to assess the performance of the irrigation bureaucracies, conceptualise irrigation management issues, and build an empirical base for analysis while drawing upon the experience of ten country cases in Asia, Africa, and Latin America. The Second Chapter focuses on the variations in the management structures identified and the types of irrigation systems; and it defines the variables of the management structures. The activities and objectives of irrigation management are discussed in Chapter Three. The objectives include: greater production and productivity of irrigation projects; improved water distribution; reduction in conflicts; greater resource mobilisation and a sustained system performance. The authors also highlight the performance criterion in this chapter. They identify about six contextual factors which affect the objectives and the performance of irrigation, which are discussed in detail in Chapter Four. In Chapter Five, some organisational variables, which would lead to improvements in irrigation, are examined.


2019 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Poolad Karimi ◽  
Bhembe Bongani ◽  
Megan Blatchford ◽  
Charlotte de Fraiture

Remote sensing techniques have been shown, in several studies, to be an extremely effective tool for assessing the performance of irrigated areas at various scales and diverse climatic regions across the world. Open access, ready-made, global ET products were utilized in this first-ever-countrywide irrigation performance assessment study. The study aimed at identifying ‘bright spots’, the highest performing sugarcane growers, and ‘hot spots’, or low performing sugarcane growers. Four remote sensing-derived irrigation performance indicators were applied to over 302 sugarcane growers; equity, adequacy, reliability and crop water productivity. The growers were segmented according to: (i) land holding size or grower scale (ii) management regime, (iii) location of the irrigation schemes and (iv) irrigation method. Five growing seasons, from June 2005 to October 2009, were investigated. The results show while the equity of water distribution is high across all management regimes and locations, adequacy and reliability of water needs improvement in several locations. Given the fact that, in general, water supply was not constrained during the study period, the observed issues with adequacy and reliability of irrigation in some of the schemes were mostly due to poor scheme and farm level water management practices. Sugarcane crop water productivity showed the highest variation among all the indicators, with Estate managed schemes having the highest CWP at 1.57 kg/m3 and the individual growers recording the lowest CWP at 1.14 kg/m3, nearly 30% less. Similarly center pivot systems showed to have the highest CWP at 1.63 kg/m3, which was 30% higher than the CWP in furrow systems. This study showcases the applicability of publicly available global remote sensing products for assessing performance of the irrigated crops at the local level in several aspects.


2019 ◽  
pp. 218-226
Author(s):  
Ahmed Ibrahim Ekhmaj ◽  
Younes Daw Ezlit ◽  
Mukhtar Mahmud Elaalem

Three major performance indicators developed by the International Water Management Institute (IWMI, 1998) are used in this paper to evaluate the performance of the irrigated crops in the region according to the commonly followed practices among farmers as compared with their performance under conditions of much improved irrigation management and agricultural practices. These indicators include the Standardized Gross Value Production (SGVP), the unit area production output (crop yield or its financial value per hectare) and the unit volume of irrigation water production output (crop yield or its financial value per cubic meter). The comparison between the two agricultural practices indicated that the unit area output of the common practices among farmers did not exceed 6483 Libyan Dinars / hectare, while that under the improved practices was 11605 Libyan Dinars / hectare. The unit volume of irrigation water output for the common practices was 0.63 Libyan Dinar / cubic meter, while that under the improved practices reached 1.63 Libyan Dinar / cubic meter. These results clearly show the importance of the applied performance indicators in the assessment and clarification of the economic impacts of any introduced interventions aiming at the improvement of and/or the differentiation among irrigation management practices and alternative agricultural cropping systems.


Author(s):  
Zulhadi Lalu

Irrigation facilities is one of the key factors in farming, especially for food crop farming, including rice. A smallscale irrigation system has an area of less than 500 hectares, and it is the backbone of family food security which in turn will lead to national food security. Damage irrigation system networks will threaten food production increase. In the future, irrigation infrastructure must be better managed so that agricultural sector can realize agricultural diversification, conserve wider irrigation system and maintain local wisdom and social capital in irrigation management. The objective of the paper is to analyze performance, problems and solutions of small irrigation systems in Indonesia, including small irrigation concepts and understanding, small irrigation performance and development, small irrigation development policies, factors affecting smallscale irrigation development, investments, and prospects. The paper also compares various performances, problems and solutions of small irrigation systems in other countries. Small scale irrigation performance is often better than large-scale irrigation, in the sense of water availability throughout the year and equitable water distribution for all service areas


Author(s):  
Edgar Muhoyi ◽  
Josue Mbonigaba

Small-scale irrigation schemes (SSIS) in developing countries have been crucial, but the evidence about their performance has not been sufficiently analyzed. This chapter documents such evidence by reviewing and classifying the performance indicators. It also assesses literature on whether there are discernible trends in the efficiency of SSIS, identifies and classifies SSIS constraints, and characterizes various channels through which SSIS might affect poverty. Objectives are achieved via a systematic review of literature from 1990 to 2017. Results indicate a lack of standardization of irrigation performance indicators, and there is evidence that irrigation has boosted agricultural performance. Even though SSIS were associated with higher productivity than rain-fed agriculture, they performed below their full potential due to undervaluation of irrigation water by irrigation authorities, farmer characteristics, costs, institutional setups, the policy environment, and design, cultural, community, and environmental issues. SSIS are important tools for poverty reduction, and relevant policy implications are outlined.


2020 ◽  
Vol 12 (18) ◽  
pp. 2949
Author(s):  
Megan Blatchford ◽  
Chris M. Mannaerts ◽  
Yijian Zeng ◽  
Hamideh Nouri ◽  
Poolad Karimi

This paper analyses the effect of the spatial assessment scale on irrigation performance indicators in small and medium-scale agriculture. Three performance indicators—adequacy (i.e., sufficiency of water use to meet the crop water requirement), equity (i.e., fairness of irrigation distribution), and productivity (i.e., unit of physical crop production/yield per unit water consumption)—are evaluated in five irrigation schemes for three spatial resolutions—250 m, 100 m, and 30 m. Each scheme has varying plot sizes and distributions, with average plot sizes ranging from 0.2 ha to 13 ha. The datasets are derived from the United Nations Food and Agricultural Organization (FAO) water productivity through open access of remotely sensed–derived data (the Water Productivity Open Access Portal—WaPOR) database. Irrigation indicators performed differently in different aspects; for adequacy, all three resolutions show similar spatial trends for relative evapotranspiration (ET) across levels for all years. However, the estimation of relative ET is often higher at higher resolution. In terms of equity, all resolutions show similar inter-annual trends in the coefficient of variation (CV); higher resolutions usually have a higher CV of the annual evapotranspiration and interception (ETIa) while capturing more spatial variability. For productivity, higher resolutions show lower crop water productivity (CWP) due to higher aboveground biomass productivity (AGBP) estimations in lower resolutions; they always have a higher CV of CWP. We find all resolutions of 250 m, 100 m, and 30 m suitable for inter-annual and inter-scheme assessments regardless of plot size. While each resolution shows consistent temporal trends, the magnitude of the trend in both space and time is smoothed by the 100 m and 250 m resolution datasets. This frequently results in substantial differences in the irrigation performance assessment criteria for inter-plot comparisons; therefore, 250 m and 100 m are not recommended for inter-plot comparison for all plot sizes, particularly small plots (<2 ha). Our findings highlight the importance of selecting the spatial resolution appropriate to scheme characteristics when undertaking irrigation performance assessment using remote sensing.


Sign in / Sign up

Export Citation Format

Share Document