GENETIC DIVERSITY OF OPUNTIA CULTIVARS USING PCR-RFLP ANALYSIS BASED ON FRUITFULL GENE

2015 ◽  
pp. 349-354
Author(s):  
E. Valadez-Moctezuma ◽  
S. Samah ◽  
D.G. Santiago-Santiago ◽  
E.K. Pérez-Martínez ◽  
R.A. Gómez-Sánchez ◽  
...  
2020 ◽  
Author(s):  
Mansoor Kodori ◽  
Zohreh Ghalavand ◽  
Abbas Yadegar ◽  
Gita Eslami ◽  
Masoumeh Azimirad ◽  
...  

Abstract Background: Clostridioides difficile is the main cause of healthcare-associated diarrhea worldwide. It is proposed that certain C. difficile toxinotypes with distinct pathogenicity locus (PaLoc) variants are associated with disease severity and outcomes. Additionally, few studies have described the common C. difficile toxinotypes, and also little is known about the tcdC variants in Iranian isolates. We characterized the toxinotypes and the tcdC genotypes from a collection of Iranian clinical C. difficile tcdA+B+ isolates with known ribotypes (RTs).Methods: Fifty C. difficile isolates with known RTs and carrying the tcdA and tcdB toxin genes were analyzed. Toxinotyping was carried out based on a PCR-RFLP analysis of a 19.6 kb region encompassing the PaLoc. Genetic diversity of the tcdC gene was determined by the sequencing of the gene.Results: Of the 50 C. difficile isolates investigated, five distinct toxinotypes were recognized. Toxinotypes 0 (33/50, 66%) and V (11/50, 22%) were the most frequently found. C. difficile isolates of the toxinotype 0 mostly belonged to RT 001 (12/33, 36.4%), whereas toxinotype V consisted of RT 126 (9/11, 81.8%). The tcdC sequencing showed six variants (35/50, 70%); tcdC-sc3 (24%), tcdC-A (22%), tcdC-sc9 (18%), tcdC-B (2%), tcdC-sc14 (2%), and tcdC-sc15 (2%). The remaining isolates were wild-types (15/50, 30%) in the tcdC gene.Conclusions: The present study demonstrates that the majority of clinical tcdA+B+ isolates of C. difficile frequently harbor tcdC genetic variants. We also found that the RT 001/ toxinotype 0 and the RT 126/ toxinotype V are the most common types among Iranian isolates. Further studies are needed to investigate the putative association of various tcdC genotypes with CDI severity and its recurrence.


2003 ◽  
Vol 69 (5) ◽  
pp. 2794-2799 ◽  
Author(s):  
Mueen Aslam ◽  
Frances Nattress ◽  
Gordon Greer ◽  
Chris Yost ◽  
Colin Gill ◽  
...  

ABSTRACT The possible origin of beef contamination and genetic diversity of Escherichia coli populations in beef cattle, on carcasses and ground beef, was examined by using random amplification of polymorphic DNA (RAPD) and PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the fliC gene. E. coli was recovered from the feces of 10 beef cattle during pasture grazing and feedlot finishing and from hides, carcasses, and ground beef after slaughter. The 1,403 E. coli isolates (855 fecal, 320 hide, 153 carcass, and 75 ground beef) were grouped into 121 genetic subtypes by using the RAPD method. Some of the genetic subtypes in cattle feces were also recovered from hides, prechilled carcasses, chilled carcasses, and ground beef. E. coli genetic subtypes were shared among cattle at all sample times, but a number of transient types were unique to individual animals. The genetic diversity of the E. coli population changed over time within individual animals grazing on pasture and in the feedlot. Isolates from one animal (59 fecal, 30 hide, 19 carcass, and 12 ground beef) were characterized by the PCR-RFLP analysis of the fliC gene and were grouped into eight genotypes. There was good agreement between the results obtained with the RAPD and PCR-RFLP techniques. In conclusion, the E. coli contaminating meat can originate from cattle feces, and the E. coli population in beef cattle was highly diverse. Also, genetic subtypes can be shared among animals or can be unique to an animal, and they are constantly changing.


2009 ◽  
Vol 99 (1) ◽  
pp. 38-49 ◽  
Author(s):  
M. F. Perera ◽  
M. P. Filippone ◽  
C. J. Ramallo ◽  
M. I. Cuenya ◽  
M. L. García ◽  
...  

Sugarcane leaves with mosaic symptoms were collected in 2006–07 in Tucumán (Argentina) and analyzed by reverse-transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) and sequencing of a fragment of the Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) coat protein (CP) genes. SCMV was detected in 96.6% of samples, with 41% showing the RFLP profile consistent with strain E. The remaining samples produced eight different profiles that did not match other known strains. SCMV distribution seemed to be more related to sugarcane genotype than to geographical origin, and sequence analyses of CP genes showed a greater genetic diversity compared with other studies. SrMV was detected in 63.2% of samples and most of these were also infected by SCMV, indicating that, unlike other countries and other Argentinean provinces, where high levels of co-infection are infrequent, co-existence is common in Tucumán. RFLP analysis showed the presence of SrMV strains M (68%) and I (14%), while co-infection between M and H strains was present in 18% of samples. Other SCMV subgroup members and the Sugarcane streak mosaic virus (SCSMV) were not detected. Our results also showed that sequencing is currently the only reliable method to assess SCMV and SrMV genetic diversity, because RT-PCR-RFLP may not be sufficiently discriminating.


2015 ◽  
Vol 18 (1) ◽  
pp. 70
Author(s):  
Tety Hartatik ◽  
Slamet Diah Volkandari ◽  
S. Sumadi ◽  
W. Widodo

The aim of this study was to determine genetic diversity of Madura cattle using Polymerase Chain Reaction – Restriction Fragment Length Polymorphisms (PCR-RFLP) analysis of the cytochrome b (cytb) gene. Samples used for the experiments were blood of 43 cattle that consist of 15 cattle obtained from Madura Island, 23 cattle from Sapudi Island, and 5 Limousin-Madura (Limura) cattle. A fragment of 464 base pair of cytb gene was amplifi ed by forward primer L14735 and reverse primer H15149. The PCR product was digested with TaqIand HinfI restriction enzymes to identify genetic patterns. Data of PCR-RFLP showed two haplotypes, that were A and B, in cattle obtained from both Madura Island and Sapudi Island. The frequencies of haplotype A and B of cattle from Sapudi Island were 69.57% and 30.47%, respectively. More diverse frequencies were observed in cattle obtained from Madura Island, where haplotype A and B were 86.67% and 13.33%, respectively. In this experiment, Limura cattle had only haplotype A. As a conclusion, PCR-RFLP of the cytb gene had been able to determine a genetic diversity of Madura cattle. Key words: Genetic diversity, Madura cattle, haplotype.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 767
Author(s):  
Marija Tanasković ◽  
Pavle Erić ◽  
Aleksandra Patenković ◽  
Katarina Erić ◽  
Milica Mihajlović ◽  
...  

Local populations of Apis mellifera are rapidly changing by modern beekeeping through the introduction of nonnative queens, selection and migratory beekeeping. To assess the genetic diversity of contemporary managed honey bees in Serbia, we sequenced mitochondrial tRNAleu-cox2 intergenic region of 241 worker bees from 46 apiaries at eight localities. Nine haplotypes were observed in our samples, with C2d being the most common and widespread. To evaluate genetic diversity patterns, we compared our data with 1696 sequences from the NCBI GenBank from neighbouring countries and Serbia. All 32 detected haplotypes belonged to the Southeast Europe lineage C, with two newly described haplotypes from our sample. The most frequent haplotype was C2d, followed by C2c and C1a. To distinguish A. m. carnica from A. m. macedonica, both previously reported in Serbia, PCR-RFLP analysis on the COI gene segment of mtDNA was used, and the result showed only the presence of A.m. carnica subspecies. An MDS plot constructed on pairwise FST values showed significant geographical stratification. Our samples are grouped together, but distant from the Serbian dataset from the GenBank. This, with the absence of A. m. macedonica subspecies from its historic range of distribution in southern Serbia, indicates that honey bee populations are changing rapidly due to the anthropogenic influence.


Sign in / Sign up

Export Citation Format

Share Document