scholarly journals Bayesian Estimation for Inverse Weibull Distribution Under Progressive Type-II Censored Data With Beta-Binomial Removals

2018 ◽  
Vol 47 (1) ◽  
pp. 77-94
Author(s):  
Pradeep Kumar Vishwakarma ◽  
Arun Kaushik ◽  
Aakriti Pandey ◽  
Umesh Singh ◽  
Sanjay Kumar Singh

This paper deals with the estimation procedure for inverse Weibull distribution under progressive type-II censored samples when removals follow Beta-binomial probability law. To estimate the unknown parameters, the maximum likelihood and Bayes estimators are obtained under progressive censoring scheme mentioned above. Bayes estimates are obtained using Markov chain Monte Carlo (MCMC) technique considering square error loss function and compared with the corresponding MLE's. Further, the expected total time on test is obtained under considered censoring scheme.  Finally, a real data set has been analysed to check the validity of the study.

Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 566-571
Author(s):  
Rana A. Bakoban

AbstractThe coefficient of variation [CV] has several applications in applied statistics. So in this paper, we adopt Bayesian and non-Bayesian approaches for the estimation of CV under type-II censored data from extension exponential distribution [EED]. The point and interval estimate of the CV are obtained for each of the maximum likelihood and parametric bootstrap techniques. Also the Bayesian approach with the help of MCMC method is presented. A real data set is presented and analyzed, hence the obtained results are used to assess the obtained theoretical results.


Author(s):  
Rania M. Kamal ◽  
Moshira A. Ismail

In this paper, based on an adaptive Type-II progressive censoring scheme, estimation of flexible Weibull extension-Burr XII distribution is discussed. Maximum likelihood estimation and asymptotic confidence intervals of the unknown parameters are obtained. The adaptive Metropolis (AM) method is applied to carry out a Bayesian estimation procedure under symmetric and asymmetric loss functions and calculate the credible intervals. A simulation study is carried out to assess the performance of the estimators. Finally, a real life data set is used for illustration purpose.


Author(s):  
Shahram Yaghoobzadeh Shahrastani ◽  
Iman Makhdoom

The combination of generalization Type-I hybrid censoring and generalization Type-II hybrid censoring schemes, scheme creates a new censoring called a Unified hybrid censoring scheme. Therefore, in this study, the E-Bayesian estimation of parameters of the inverse Weibull (IW) distribution is obtained under the unified hybrid censoring scheme, and the efficiency of the proposed method was compared with the Bayesian estimator using Monte Carlo simulation and a real data set.


2016 ◽  
Vol 5 (4) ◽  
pp. 1
Author(s):  
Bander Al-Zahrani

The paper gives a description of estimation for the reliability function of weighted Weibull distribution. The maximum likelihood estimators for the unknown parameters are obtained. Nonparametric methods such as empirical method, kernel density estimator and a modified shrinkage estimator are provided. The Markov chain Monte Carlo method is used to compute the Bayes estimators assuming gamma and Jeffrey priors. The performance of the maximum likelihood, nonparametric methods and Bayesian estimators is assessed through a real data set.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Kyeongjun Lee ◽  
Jung-In Seo

This paper provides an estimation method for an unknown parameter by extending weighted least-squared and pivot-based methods to the Gompertz distribution with the shape and scale parameters under the progressive Type-II censoring scheme, which induces a consistent estimator and an unbiased estimator of the scale parameter. In addition, a way to deal with a nuisance parameter is provided in the pivot-based approach. For evaluation and comparison, the Monte Carlo simulations are conducted, and real data are analyzed.


2021 ◽  
Vol 50 (5) ◽  
pp. 77-100
Author(s):  
Aidi khaoula ◽  
Sanku Dey ◽  
Devendra Kumar ◽  
Seddik-Ameur N

In this paper, we try to contribute to the distribution theory literature by incorporating a new bounded distribution, called the unit generalized inverse Weibull distribution (UGIWD) in the (0, 1) intervals by transformation method. The proposed distribution exhibits  increasing and bathtub shaped hazard rate function. We derive some basic statistical properties of the new distribution. Based on complete sample, the model parameters are obtained by the methods of maximum likelihood, least square, weighted least square, percentile, maximum product of spacing and Cram`er-von-Mises and compared them using Monte Carlo simulation study. In addition, bootstrap confidence intervals of the parameters of the model based on aforementioned methods of estimation are also obtained. We illustrate the performance of the proposed distribution by means of one real data set and the data set shows that the new distribution is more appropriate as compared to unit Birnbaum-Saunders, unit gamma, unit Weibull, Kumaraswamy and unit Burr III distributions. Further, we construct chi-squared goodness-of-fit tests for the UGIWD using right censored data based on Nikulin-Rao-Robson (NRR) statistic and its modification. The criterion test used is the modified chi-squared statistic Y^2, developedby Bagdonavi?ius and Nikulin, 2011 for some parametric models when data are censored. The performances of the proposed test are shown by an intensive simulation study and an application to real data set


2021 ◽  
Vol 42 (2) ◽  
pp. 318-335
Author(s):  
Neha Choudhary ◽  
Abhishek Tyagi ◽  
Bhupendra Singh

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Sanjay Kumar Singh ◽  
Umesh Singh ◽  
Vikas Kumar Sharma

We have developed the Bayesian estimation procedure for flexible Weibull distribution under Type-II censoring scheme assuming Jeffrey's scale invariant (noninformative) and Gamma (informative) priors for the model parameters. The interval estimation for the model parameters has been performed through normal approximation, bootstrap, and highest posterior density (HPD) procedures. Further, we have also derived the predictive posteriors and the corresponding predictive survival functions for the future observations based on Type-II censored data from the flexible Weibull distribution. Since the predictive posteriors are not in the closed form, we proposed to use the Monte Carlo Markov chain (MCMC) methods to approximate the posteriors of interest. The performance of the Bayes estimators has also been compared with the classical estimators of the model parameters through the Monte Carlo simulation study. A real data set representing the time between failures of secondary reactor pumps has been analysed for illustration purpose.


Sign in / Sign up

Export Citation Format

Share Document