scholarly journals Bias-Corrected Maximum Likelihood Estimators of the Parameters of the Unit-Weibull Distribution

2021 ◽  
Vol 50 (3) ◽  
pp. 41-53
Author(s):  
Andre Menezes ◽  
Josmar Mazucheli ◽  
F. Alqallaf ◽  
M. E. Ghitany

It is well known that the maximum likelihood estimates (MLEs) have appealing statistical properties. Under fairly mild conditions their asymptotic distribution is normal, and no other estimator has a smaller asymptotic variance.However, in finite samples the maximum likelihood estimates are often biased estimates and the bias disappears as the sample size grows.Mazucheli, Menezes, and Ghitany (2018b) introduced a two-parameter unit-Weibull distribution which is useful for modeling data on the unit interval, however its MLEs are biased in finite samples.In this paper, we adopt three approaches for bias reduction of the MLEs of the parameters of unit-Weibull distribution.The first approach is the analytical methodology suggested by Cox and Snell (1968), the second is based on parametric bootstrap resampling method, and the third is the preventive approach introduced by Firth (1993).The results from Monte Carlo simulations revealed that the biases of the estimates should not be ignored and the bias reduction approaches are equally efficient. However, the first approach is easier to implement.Finally, applications to two real data sets are presented for illustrative purposes.

2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1231
Author(s):  
Guillermo Martínez-Flórez ◽  
Roger Tovar-Falón

In this paper, two new distributions were introduced to model unimodal and/or bimodal data. The first distribution, which was obtained by applying a simple transformation to a unit-Birnbaum–Saunders random variable, is useful for modeling data with positive support, while the second is appropriate for fitting data on the (0,1) interval. Extensions to regression models were also studied in this work, and statistical inference was performed from a classical perspective by using the maximum likelihood method. A small simulation study is presented to evaluate the benefits of the maximum likelihood estimates of the parameters. Finally, two applications to real data sets are reported to illustrate the developed methodology.


Author(s):  
Fiaz Ahmad Bhatti ◽  
G. G. Hamedani ◽  
Haitham M. Yousof ◽  
Azeem Ali ◽  
Munir Ahmad

A flexible lifetime distribution with increasing, decreasing, inverted bathtub and modified bathtub hazard rate called Modified Burr XII-Inverse Weibull (MBXII-IW) is introduced and studied. The density function of MBXII-IW is exponential, left-skewed, right-skewed and symmetrical shaped.  Descriptive measures on the basis of quantiles, moments, order statistics and reliability measures are theoretically established. The MBXII-IW distribution is characterized via different techniques. Parameters of MBXII-IW distribution are estimated using maximum likelihood method. The simulation study is performed to illustrate the performance of the maximum likelihood estimates (MLEs). The potentiality of MBXII-IW distribution is demonstrated by its application to real data sets: serum-reversal times and quarterly earnings.


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 32-47
Author(s):  
Gauss Cordeiro ◽  
Maria de Lima ◽  
Edwin Ortega ◽  
Adriano Suzuki

We propose an extended fatigue lifetime model called the odd log-logistic Birnbaum–Saunders–Poisson distribution, which includes as special cases the Birnbaum–Saunders and odd log-logistic Birnbaum–Saunders distributions. We obtain some structural properties of the new distribution. We define a new extended regression model based on the logarithm of the odd log-logistic Birnbaum–Saunders–Poisson random variable. For censored data, we estimate the parameters of the regression model using maximum likelihood. We investigate the accuracy of the maximum likelihood estimates using Monte Carlo simulations. The importance of the proposed models, when compared to existing models, is illustrated by means of two real data sets.


Author(s):  
Samuel U. Enogwe ◽  
Chisimkwuo John ◽  
Happiness O. Obiora-Ilouno ◽  
Chrisogonus K. Onyekwere

In this paper, we propose a new lifetime distribution called the generalized weighted Rama (GWR) distribution, which extends the two-parameter Rama distribution and has the Rama distribution as a special case. The GWR distribution has the ability to model data sets that have positive skewness and upside-down bathtub shape hazard rate. Expressions for mathematical and reliability properties of the GWR distribution have been derived. Estimation of parameters was achieved using the method of maximum likelihood estimation and a simulation was performed to verify the stability of the maximum likelihood estimates of the model parameters. The asymptotic confidence intervals of the parameters of the proposed distribution are obtained. The applicability of the GWR distribution was illustrated with a real data set and the results obtained show that the GWR distribution is a better candidate for the data than the other competing distributions being investigated.


2019 ◽  
Vol 42 (1) ◽  
pp. 1-33 ◽  
Author(s):  
Ronaldo Silva ◽  
Frank Gomes-Silva ◽  
Manoel Ramos ◽  
Gauss Moutinho Cordeiro ◽  
Pedro Marinho ◽  
...  

We propose a new family of distributions called the exponentiated Kumaraswamy-G class with three extra positive parameters, which generalizes the Cordeiro and de Castro's family. Some special distributions in the new class are discussed. We derive some mathematical properties of the proposed class including explicit expressions for the quantile function, ordinary and incomplete moments, generating function, mean deviations, reliability, Rényi entropy and Shannon entropy. The method of maximum likelihood is used to fit the distributions in the proposed class. Simulations are performed in order to assess the asymptotic behavior of the maximum likelihood estimates. We illustrate its potentiality with applications to two real data sets which show that the extended Weibull model in the new class provides a better fit than other generalized Weibull distributions.


2018 ◽  
Vol 8 (1) ◽  
pp. 94
Author(s):  
Fiaz Ahmad Bhatti ◽  
G.G. Hamedani ◽  
Wenhui Sheng ◽  
Munir Ahmad

In this paper, a flexible lifetime distribution called Cubic rank transmuted modified Burr III-Pareto (CRTMBIII-P) is developed on the basis of the cubic ranking transmutation map. The density function of CRTMBIII-P is arc, exponential, left-skewed, right-skewed and symmetrical shaped. Descriptive measures such as moments, incomplete moments, inequality measures, residual life function and reliability measures are theoretically established. The CRTMBIII-P distribution is characterized via ratio of truncated moments. Parameters of the CRTMBIII-P distribution are estimated using maximum likelihood method. The simulation study for the performance of the maximum likelihood estimates (MLEs) of the parameters of the CRTMBIII-P distribution is carried out. The potentiality of CRTMBIII-P distribution is demonstrated via its application to the real data sets: tensile strength of carbon fibers and strengths of glass fibers. Goodness of fit of this distribution through different methods is studied.


Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2511-2531 ◽  
Author(s):  
M.S. Eliwa ◽  
M. El-Morshedy

In this paper we have considered one model, namely the bivariate discrete inverse Weibull distribution, which has not been considered in the statistical literature yet. The proposed model is a discrete analogue of Marshall-Olkin inverse Weibull distribution. Some of its important statistical properties are studied. Maximum likelihood and Bayesian methods are used to estimate the model parameters. A detailed simulation study is carried out to examine the bias and mean square error of maximum likelihood and Bayesian estimators. Finally, three real data sets are analyzed to illustrate the importance of the proposedmodel.


Author(s):  
Fastel Chipepa ◽  
Boikanyo Makubate ◽  
Broderick Oluyede ◽  
Kethamile Rannona

We present a new class of distributions called the Topp-Leone-G Power Series (TL-GPS) class of distributions. This model is obtained by compounding the Topp-Leone-G distribution with the power series distribution. Statistical prop- erties of the TL-GPS class of distributions are obtained. Maximum likelihood estimates for the proposed model were obtained. A simulation study is carried out for the special case of Topp-Leone Log-Logistic Poisson distribution to assess the performance of the maximum likelihood estimates. Finally, we apply Topp-Leone-log-logistic Poisson distribution to real data sets to illustrate the usefulness and applicability of the proposed class of distributions.


2021 ◽  
Vol 39 (4) ◽  
pp. 505-521
Author(s):  
Valdemiro Piedade VIGAS ◽  
Fábio PRATAVIERA ◽  
Giovana Oliveira SILVA

In this paper, we proposed the Poisson-Weibull distribution for the modeling of survival data. The motivation to study this model since, in addition to generalizing the Weibull distribution, which is widely used in several areas of knowledge among them the Survival and Reliability analysis, it presents great exibility in the forms of the hazard function. The Poisson-Weibull distribution was created in a composition of discrete and continuous distributions where there is no information about which factor was responsible for the component failure, only the minimum lifetime value among all risks is observed. The maximum likelihood approach was used to estimate the parameters of the model. Also was conducted a simulation study to examine the mean, the bias, and the root of the mean square error of the maximum likelihood estimates of the proposed model according to the censoring percentages and sample sizes. The model selection criteria were also applied, in addition to graphic techniques such as TTT-Plot and Kaplan-Meier. Application to the real data set was used to illustrate the usefulnessof the distribution.


Sign in / Sign up

Export Citation Format

Share Document