scholarly journals New Distribution for Fitting Discrete Data: The Poisson-Gold Distribution and Its Statistical Properties

2021 ◽  
Vol 50 (4) ◽  
pp. 19-35
Author(s):  
Ahmad Hanandeh ◽  
Amjad D. Al-Nasser

Motivated mainly by lifetime issues, a new lifetime distribution coined ``Discrete Poisson-Gold distribution'' is introduced in this paper. Different structural properties of the new distribution are derived including moment generating function and the $r^{th}$ moment and others are presented. In addition, we discussed various important mathematical properties of the new distribution including estimation procedures for estimating the distribution parameters using the maximum likelihood and method of moments. The usefulness and credibility of the distribution are illustrated by means of two real-data applications to show its superior performance over some other well-known lifetime distributions and to prove its versatility in practical applications.

2019 ◽  
Vol 13 (2) ◽  
pp. 54
Author(s):  
Hamdy M. Salem

In this paper, a new distribution namely, The Marshall–OlkinGeneralized Inverse Weibull Distribution is illustrated and studied. The new distribution is very flexible and contains sub-models such asinverse exponential, inverse Rayleigh, Weibull, inverse Weibull, Marshall–Olkininverse Weibull and Fréchetdistributions. Also, the hazard function of the new distribution can produce variety of forms:an increase, a decrease and an upside-down bathtub. Some properties such as hazard function, quintile function, entropy, moment generating function and order statistics are obtained. Different estimation approaches namely, maximum likelihood estimators, interval estimators, least square estimators, fisher information matrix and asymptotic confidence intervals are described. To illustrate the superior performance of the proposed distribution, a simulation study and a real data analysis are investigated against other models.


2021 ◽  
Vol 6 (2) ◽  
pp. 107-116
Author(s):  
Adewunmi Olaniran Adeyemi ◽  
Eno Emmanuella Akarawak ◽  
Ismail Adedeji Adeleke

Many existing distributions in literatures does not have the modeling fits capacity to adequately describe the real-life phenomena. The Exponential Pareto (EP) distribution has further gained some generalizations among several authors using different generator techniques with an aim to obtain a new distribution with greater flexibility. This article proposes Gompertz Exponential Pareto (GEP) distribution using the Gompertz generator. Findings from the study revealed some lifetime distributions as special cases and mathematical properties of the distribution investigated including the mean, variance, coefficient of variation, quantile, moment, moment generating function and, order statistics. The distribution can be positively or negatively skewed. It is unimodal with failure rates whose shapes could be reversed J bathtub, constant, decreasing and, increasing and the parameters were estimated using maximum likelihood estimation approach. Applications to two real-life datasets revealed the ability of GEP distribution to provide more flexibilities and better fit to the dataset compared to some previously proposed distributions for the data. The results also revealed that GEP had the superior performance over other generalizations of EP distribution existing in literatures and the performance has further strengthened the usefulness of the Gompertz-generator technique.


2020 ◽  
Vol 17 (11) ◽  
pp. 4835-4840
Author(s):  
Sanaa Al-Marzouki ◽  
Sharifah Alrajhi

In this paper we introduce a new lifetime distribution derived from odd generalized NH-G (OGNH-G) family technique called OGNH-inverse exponential (OGNHIE) distribution. We establish various mathematical properties. The maximum likelihood (ML) estimates for the OGNHIE parameters are derived. Finally the model is applied to a real dataset. We apply goodness of fit statistics and graphical tools to examine the adequacy of the OGNHIE distribution. The importance of this research lies in deriving a new distribution under the name OGNHIE, which is considered the best distributions in analyzing data of life times at present if compared to many distribution in analysis real data.


Author(s):  
Hamdy Salem ◽  
Abd-Elwahab Hagag

In this paper, a composite distribution of Kumaraswamy and Lindley distributions namely, Kumaraswamy-Lindley Kum-L distribution is introduced and studied. The Kum-L distribution generalizes sub-models for some widely known distributions. Some mathematical properties of the Kum-L such as hazard function, quantile function, moments, moment generating function and order statistics are obtained. Estimation of parameters for the Kum-L using maximum likelihood estimation and least square estimation techniques are provided. To illustrate the usefulness of the proposed distribution, simulation study and real data example are used.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


2019 ◽  
Vol 16 (4) ◽  
pp. 0937
Author(s):  
Saad Et al.

In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.


2020 ◽  
Vol XVII (2) ◽  
pp. 1-14
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Syed Muhammad Akbar Ali Shah

This paper presents the details of a proposed continuous model for the minimum Gumbel Burr distribution which is based on four different parameters. The model is obtained by compounding the Gumbel type-II and Burr-XII distributions. Basic mathematical properties of the new distribution were studied including the quantile function, ordinary and incomplete moments, moment generating function, order statistics, Rényi entropy, stress-strength model and stochastic ordering. The parameters of the proposed distribution are estimated using the maximum likelihood method. A Monte Carlo simulation was presented to examine the behaviour of the parameter estimates. The flexibility of the proposed model was assessed by means of three applications.


2017 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Mohieddine Rahmouni ◽  
Ayman Orabi

This paper introduces a new two-parameter lifetime distribution, called the exponential-generalized truncated geometric (EGTG) distribution, by compounding the exponential with the generalized truncated geometric distributions. The new distribution involves two important known distributions, i.e., the exponential-geometric (Adamidis and Loukas, 1998) and the extended (complementary) exponential-geometric distributions (Adamidis et al., 2005; Louzada et al., 2011) in the minimum and maximum lifetime cases, respectively. General forms of the probability distribution, the survival and the failure rate functions as well as their properties are presented for some special cases. The application study is illustrated based on two real data sets.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


2021 ◽  
Vol 9 (2) ◽  
pp. 311-333
Author(s):  
Hanaa Elgohari

In this paper, we introduce a new generalization of the Exponentiated Exponential distribution. Various structural mathematical properties are derived. Numerical analysis for mean, variance, skewness and kurtosis and the dispersion index is performed. The new density can be right skewed and symmetric with "unimodal" and "bimodal" shapes. The new hazard function can be "constant", "decreasing", "increasing", "increasing-constant", "upside down-constant", "decreasing nstant". Many bivariate and multivariate type model have been also derived. We assess the performance of the maximum likelihood method graphically via the biases and mean squared errors. The usefulness and flexibility of the new distribution is illustrated by means of two real data sets.


Sign in / Sign up

Export Citation Format

Share Document