scholarly journals A Bivariate Index Vector to Measure Departure from Quasi-symmetry for Ordinal Square Contingency Tables

2021 ◽  
Vol 50 (5) ◽  
pp. 115-126
Author(s):  
Shuji Ando

This study proposes a bivariate index vector to concurrently analyze both the degree and direction of departure from the quasi-symmetry (QS) model for ordinal square contingency tables. The QS model and extended QS (EQS) models identify the symmetry and asymmetry between the probabilities of normal circulation and reverse circulation when the order exists for arbitrary three categories. The asymmetry parameter of the EQS model implies the degree of departure from the QS model; the EQS model is equivalent to the QS model when the asymmetry parameter equals to one. The structure of the EQS model differs depending on whether the asymmetry parameter approaches zero or infinity. Thus, the asymmetry parameter of the EQS model also implies the direction of departure from the QS model. The proposed bivariate index vector is constructed by combining existing and original sub-indexes that represent the degree of departure from the QS model and its direction. These sub-indexes are expressed as functions of the asymmetry parameter under the EQS model. We construct an estimator of the proposed bivariate index vector and an approximate confidence region for the proposed bivariate index vector. Using real data, we show that the proposed bivariate index vector is important to compare degrees of departure from the QS model for plural data sets.

Stats ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Vladimir Ostrovski

We introduce new equivalence tests for approximate independence in two-way contingency tables. The critical values are calculated asymptotically. The finite sample performance of the tests is improved by means of the bootstrap. An estimator of boundary points is developed to make the bootstrap based tests statistically efficient and computationally feasible. We compare the performance of the proposed tests for different table sizes by simulation. Then we apply the tests to real data sets.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shuji Ando

Summary This study proposes two original asymmetry models based on ordered scores for square contingency tables with the same row and column ordinal classifications. The proposed models can be applied to cases in which the scores of all categories are known or unknown. In the proposed models, the log odds for an observation falling in the (i, j)th cell instead of the (j, i)th cell are inversely proportional to the difference of the ordered scores corresponding to categories i and j. The asymmetry parameter of the proposed model can be useful for inferring whether the row variable is stochastically greater than the column variable or vice versa. The proposed models constantly hold when the symmetry model holds, but the converse is not necessarily true. This study also examines what is necessary for a model, in addition to the proposed models, to satisfy the symmetry model, and gives separations of the symmetry model using the proposed and marginal mean equality models. We apply real data to show the utility of the proposed models. The proposed models provide a better fit than that of the existing models.


1997 ◽  
Author(s):  
Gorden Videen ◽  
Ronald G. Pinnick ◽  
Dat Ngo ◽  
Qiang Fu ◽  
Petr Chylek

2021 ◽  
Author(s):  
Jakob Raymaekers ◽  
Peter J. Rousseeuw

AbstractMany real data sets contain numerical features (variables) whose distribution is far from normal (Gaussian). Instead, their distribution is often skewed. In order to handle such data it is customary to preprocess the variables to make them more normal. The Box–Cox and Yeo–Johnson transformations are well-known tools for this. However, the standard maximum likelihood estimator of their transformation parameter is highly sensitive to outliers, and will often try to move outliers inward at the expense of the normality of the central part of the data. We propose a modification of these transformations as well as an estimator of the transformation parameter that is robust to outliers, so the transformed data can be approximately normal in the center and a few outliers may deviate from it. It compares favorably to existing techniques in an extensive simulation study and on real data.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 62
Author(s):  
Zhengwei Liu ◽  
Fukang Zhu

The thinning operators play an important role in the analysis of integer-valued autoregressive models, and the most widely used is the binomial thinning. Inspired by the theory about extended Pascal triangles, a new thinning operator named extended binomial is introduced, which is a general case of the binomial thinning. Compared to the binomial thinning operator, the extended binomial thinning operator has two parameters and is more flexible in modeling. Based on the proposed operator, a new integer-valued autoregressive model is introduced, which can accurately and flexibly capture the dispersed features of counting time series. Two-step conditional least squares (CLS) estimation is investigated for the innovation-free case and the conditional maximum likelihood estimation is also discussed. We have also obtained the asymptotic property of the two-step CLS estimator. Finally, three overdispersed or underdispersed real data sets are considered to illustrate a superior performance of the proposed model.


Econometrics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Šárka Hudecová ◽  
Marie Hušková ◽  
Simos G. Meintanis

This article considers goodness-of-fit tests for bivariate INAR and bivariate Poisson autoregression models. The test statistics are based on an L2-type distance between two estimators of the probability generating function of the observations: one being entirely nonparametric and the second one being semiparametric computed under the corresponding null hypothesis. The asymptotic distribution of the proposed tests statistics both under the null hypotheses as well as under alternatives is derived and consistency is proved. The case of testing bivariate generalized Poisson autoregression and extension of the methods to dimension higher than two are also discussed. The finite-sample performance of a parametric bootstrap version of the tests is illustrated via a series of Monte Carlo experiments. The article concludes with applications on real data sets and discussion.


Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 202
Author(s):  
Louai Alarabi ◽  
Saleh Basalamah ◽  
Abdeltawab Hendawi ◽  
Mohammed Abdalla

The rapid spread of infectious diseases is a major public health problem. Recent developments in fighting these diseases have heightened the need for a contact tracing process. Contact tracing can be considered an ideal method for controlling the transmission of infectious diseases. The result of the contact tracing process is performing diagnostic tests, treating for suspected cases or self-isolation, and then treating for infected persons; this eventually results in limiting the spread of diseases. This paper proposes a technique named TraceAll that traces all contacts exposed to the infected patient and produces a list of these contacts to be considered potentially infected patients. Initially, it considers the infected patient as the querying user and starts to fetch the contacts exposed to him. Secondly, it obtains all the trajectories that belong to the objects moved nearby the querying user. Next, it investigates these trajectories by considering the social distance and exposure period to identify if these objects have become infected or not. The experimental evaluation of the proposed technique with real data sets illustrates the effectiveness of this solution. Comparative analysis experiments confirm that TraceAll outperforms baseline methods by 40% regarding the efficiency of answering contact tracing queries.


Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 474
Author(s):  
Abdulhakim A. Al-Babtain ◽  
Ibrahim Elbatal ◽  
Hazem Al-Mofleh ◽  
Ahmed M. Gemeay ◽  
Ahmed Z. Afify ◽  
...  

In this paper, we introduce a new flexible generator of continuous distributions called the transmuted Burr X-G (TBX-G) family to extend and increase the flexibility of the Burr X generator. The general statistical properties of the TBX-G family are calculated. One special sub-model, TBX-exponential distribution, is studied in detail. We discuss eight estimation approaches to estimating the TBX-exponential parameters, and numerical simulations are conducted to compare the suggested approaches based on partial and overall ranks. Based on our study, the Anderson–Darling estimators are recommended to estimate the TBX-exponential parameters. Using two skewed real data sets from the engineering sciences, we illustrate the importance and flexibility of the TBX-exponential model compared with other existing competing distributions.


Sign in / Sign up

Export Citation Format

Share Document