scholarly journals Numerical analysis of free vibrations of open cylindrical shells with elliptical cross section

Author(s):  
A. Grigorenko ◽  
M. Borysenko ◽  
O. Boychuk

The natural frequencies and the corresponding vibration modes of open cylindrical shells with an elliptical cross-section and variable thickness are analyzed. Various opening angle of the shell along both the minor and major axes are allowed and various boundary conditions are considered. The numerical solutions are obtained using the finite element package FEMAP with the NASTRAN solver. A number of lowfrequency vibrations are investigated in terms of their dependence on the opening angle along major and minor axes of the shell. The vibration forms for the first ten frequencies with different boundary conditions at the same opening angles are shown.

2020 ◽  
Vol 55 (5) ◽  
pp. 728-736
Author(s):  
S. A. Bochkarev ◽  
S. V. Lekomtsev ◽  
V. P. Matveenko

2021 ◽  
Vol 37 ◽  
pp. 346-358
Author(s):  
Fuchun Yang ◽  
Xiaofeng Jiang ◽  
Fuxin Du

Abstract Free vibrations of rotating cylindrical shells with distributed springs were studied. Based on the Flügge shell theory, the governing equations of rotating cylindrical shells with distributed springs were derived under typical boundary conditions. Multicomponent modal functions were used to satisfy the distributed springs around the circumference. The natural responses were analyzed using the Galerkin method. The effects of parameters, rotation speed, stiffness, and ratios of thickness/radius and length/radius, on natural response were also examined.


2017 ◽  
Vol 45 (3) ◽  
pp. 286-294 ◽  
Author(s):  
István Ecsedi ◽  
Attila Baksa

The object of this article is the Saint–Venant torsion of anisotropic, homogeneous bar with solid elliptical cross section. A general solution of the Saint–Venant torsion for anisotropic elliptical cross section is presented and some known results are reformulated. The case of non-warping cross section is analysed.


2016 ◽  
Vol 25 (3) ◽  
Author(s):  
B. P. Kondratyev ◽  
N. G. Trubitsyna

AbstractIn this paper the problem of the tidal potential of a homogeneous gravitating torus with an elliptical cross-section sleeve is solved. In particular, the potentials in analytical form in the vicinity of the center of the torus and its external region are found. This torus can serve as a gravitational model of the Kuiper belt.


1952 ◽  
Vol 19 (1) ◽  
pp. 37-48
Author(s):  
R. A. Clark ◽  
T. I. Gilroy ◽  
E. Reissner

Abstract This paper is concerned with the application of the theory of thin shells to several problems for toroidal shells with elliptical cross section. These problems are as follows: (a) Closed shell subjected to uniform normal wall pressure. (b) Open shell subjected to end bending moments. (c) Combination of the results for the first and second problems in such a way as to obtain results for the stresses and deformations in Bourdon tubes. In all three problems the distribution of stresses is axially symmetric but only in the first problem are the displacements axially symmetric. The magnitude of stresses and deformations for given loads depends in all three problems on the magnitude of the two parameters bc/ah and b/c where b and c are the semiaxes of the elliptical section, a is the distance of the center of the section from the axis of revolution, and h is the thickness of the wall of the shell. For sufficiently small values of bc/ah trigonometric series solutions are obtained. For sufficiently large values of bc/ah asymptotic solutions are obtained. Numerical results are given for various quantities of practical interest as a function of bc/ah for the values 2, 1, 1/2, 1/4 of the semiaxes ratio b/c. It is suggested that the analysis be extended to still smaller values of b/c and to cross sections other than elliptical.


Sign in / Sign up

Export Citation Format

Share Document