CURRENT STATUS AND DEVELOPMENT TRENDS OF RADAR SYSTEMS AIRBORNE BASED WITH TIME-VARYING RELATIVE SPATIAL CONFIGURATION

Author(s):  
V. Druzhynin ◽  
N. Tsopa ◽  
H. Zhyrov ◽  
I. Chetverikov

The work is devoted to the review of the current state and development trends of airborne-based radar systems with a time-varying relative spatial configuration. The relevance of consideration of the state and tendencies of development of radar systems of aviation-ground based with time-varying relative spatial configuration due to the practical need to obtain radar images (radars) of objects in the front area of the system review, taking into account the growing requirements for promptness and accuracy of image detection of real-time surveillance in a complex signal-interference environment. The generalized structure of the construction of the systems considered in the work is presented and the main prospects for their practical application in solving the problems of classifying radar objects and monitoring radio emission sources are determined. Estimates are given of the main qualitative characteristics of the images of radar objects when applied when using the systems considered and the accuracy of determining the coordinates of radio emission sources is estimated based on an approved mathematical apparatus. The priority areas of scientific research on the further development of the theory of multi-positional reception of radar information in the conditions of information uncertainty when using systems with a time-variable relative spatial configuration are determined.

2021 ◽  
Vol 5 (1) ◽  
pp. 75-81
Author(s):  
Anatolij Kobziev ◽  
Mykhailo Murzin

Direction finding networks have found application in radio monitoring, radio intelligence and passive radar systems. The operation of the direction-finding network in the short-wave range has a number of distinctive features, namely, long range of direction finders (up to several thousand km) due to ionospheric propagation of radio waves and high sensitivity of narrow-band signal receivers. In addition, the distance between direction finders can be hundreds or thousands of kilometers. Therefore the calculations should be carried out due to the location of the direction finders and radio sources on a spherical surface. In this work, analytical relationships are obtained for calculating the accuracy indicators of the estimation of coordinate information (latitude and longitude) at the output of the direction finding network in a rather general form in relation to the features of the short-wave range. The problem is solved in a geographic coordinate system for an arbitrary number of direction finders (two at least) and with their arbitrary location on the surface of Earth. To carry out a comparative analysis and assess the quality of coordinate information for various options for placing direction finders, it is proposed to display accuracy indicators using working zones (for example, round). The use of working areas allows a visual assessment on the map overall spatial pattern for accuracy indicators direction-finding network. The results of the calculation of working areas direction-finding network shortwave when placing it on the territory of Ukraine in the case of the smallest real errors direction-finding, and a mutual separation distance finders maximum permissible selected. The calculation results reflect the limiting possibilities for the accuracy of determining the coordinates of radio emission sources for such a direction finding network with a minimum number of direction finders (3 or 4). The given method of calculating working zones allows for the implementation of the best accuracy indicators to choose a specific option for placing direction finders on the territory of the country, taking into account the influence of all factors (approach of positions, availability of access roads, conditions for accommodating service personnel, etc.). As an example, the work considers 3 options for the location of direction finders with the maximum separation on the territory of Ukraine. The developed technique can also be used for other passive radar systems with direction finding coordinates, when it is necessary to take into account the spherical form of the Earth. Such a system can include two or more aerial reconnaissance aircraft with direction finders on board, as well as one aircraft or unmanned vehicle that determines coordinates by the method of multiple direction finding on the flight route.


2007 ◽  
Vol 66 (1) ◽  
pp. 63-67
Author(s):  
N. I. Kozachek ◽  
Vladimir B. Avdeev ◽  
D. V. Senkevich ◽  
S. N. Panychev

2012 ◽  
Vol 8 (S294) ◽  
pp. 489-494 ◽  
Author(s):  
Yihua Yan ◽  
Wei Wang ◽  
Fei Liu ◽  
Lihong Geng ◽  
Zhijun Chen ◽  
...  

AbstractTo address fundamental processes in the solar eruptive phenomena it is important to have imaging-spectroscopy over centimetric-decimetric wave range. The Chinese Spectral Radioheliograph (CSRH) in 0.4-15 GHz range with high time, space and frequency resolutions is being constructed to achieve this goal. The perspectives to open new observational windows on solar flares and CMEs will be achieved by mapping the radio emission from unstable electron populations during the basic processes of energy release. CSRH is located in a radio quiet region in Inner Mongolia of China. The array of CSRH-I in 0.4-2.0 GHz with 40 4.5m antennas has been established and starts test observations. The 60 2m antennas for array of CSRH-II in 2-15 GHz have been mounted and assembled. The progress and current status of CSRH are introduced.


2014 ◽  
Vol 2 (25) ◽  
pp. 42 ◽  
Author(s):  
Alexander Mikhailovich Plotnikov ◽  
Yury Ivanovich Ryzhikov ◽  
Boris Vladimirovich Sokolov ◽  
Rafael Midkhatovich Yusupov

Author(s):  
V.N. Antipov ◽  
S.L. Ivanov ◽  
E.Е. Koltyshev ◽  
V.V. Mukhin ◽  
A.Yu. Frolov ◽  
...  

Modern radars, along with the detection and measurement of target coordinates against the background of interference, must solve the problem of detecting radio emission sources and measuring their coordinates. Detection of interference, as well as targets, in the radar is provided in the main (total) channel based on the analysis of the rangefinder-Doppler portrait of the received signal. The main disadvantage of such a detector is that the interference coming along the side lobes of the sum antenna and falling into the dip of the antenna radiation pattern may not be detected. Therefore, the problem arises of developing and analyzing algorithms for detecting interference in a radar with several receiving channels. The article discusses the logical, energy, correlation and eigenvalues of the cross-correlation matrix of the received signals interference detectors for two receiving channels. Their characteristics are given. It is shown that two-channel interference detectors based on the analysis of the eigenvalues of the cross-correlation matrix have the highest efficiency. Energy and logical algorithms are quite a bit inferior to them. The developed algorithms make it possible to effectively detect radio emission sources even when they are in the dip of one of the antenna patterns.


Author(s):  
Anatoly M. Rembovsky ◽  
Alexander V. Ashikhmin ◽  
Vladimir A. Kozmin ◽  
Sergey M. Smolskiy

1968 ◽  
Vol 153 ◽  
pp. L41 ◽  
Author(s):  
John A. Ball ◽  
David H. Staelin

Author(s):  
Archana Rawat ◽  
Saumya Dwivedi ◽  
Suraj Srivastava ◽  
Aditya K. Jagannatham

2012 ◽  
Vol 165 (3) ◽  
pp. 272-288
Author(s):  
Krzysztof MOTYL ◽  
Ryszard WOŹNIAK

The article presents the current status in the field of antitank guided missiles in the Polish Armed Forces. It describes the modern solutions of this type of weapons in the leading armies in the world and presents development trends in antitank guided missiles, emphasizing the needs of the Polish Armed Forces.


Sign in / Sign up

Export Citation Format

Share Document