scholarly journals NONLINEAR PROBLEM OF INTERFACE CRACK BEHAVIOR UNDER THE ACTION OF SHEARING WAVE

Author(s):  
A. V. Menshykov ◽  
V. A. Menshykov ◽  
O. Yu. Kladova

Solution of the problem for an interface crack under the action of a harmonic shear wave is presented. It is shown that the same problems solutions of other authors were performed without taking into account the crack faces contact, and results obtained indicate the interpenetration of the faces, that is not possible. Thus, it is proved that the problem is nonlinear because the positions and sizes of the contact zone are unknown and variable during the loading. The solution is obtained by the boundary integral equations method taking into account the contact interaction of the crack faces: using the Somigliana dynamic identity and the boundary equations arising from them, the transition from the two-dimensional problem to the equivalent problem at the boundaries of the domain is realized; the vector components in the boundary integral equations are presented by Fourier series, to prevent the interpenetration of the crack faces and the emergence of tensile forces in the contact zone the Signorini unilateral constraints are involved. The numerical solution is performed by the method of boundary elements with constant approximation of the problem parameters on an element. Numerical researches of the shear wave frequency influence onto the crack faces and adjoining surface displacements, opening and extent of crack faces contact zone are carried out. The quantitative difference between the maximum tangential and normal components of adhesion line and the crack faces displacements is shown. It is shown that the position and length of the contact area change during the load period, and the magnitudes of the contact forces vary along the crack length.

Author(s):  
Oleksandr Menshykov ◽  
Vasyl Menshykov ◽  
Olga Kladova

Solution for the problem for an interface crack under the action of a harmonic shear wave in normal direction is presented. The contact of the crack faces is put into consideration. The problem is solved by the boundary integral equations method, the vector components in the boundary integral equations are presented by Fourier series. The unilateral Signorini boundary conditions are involved to prevent the interpenetration of the crack faces and the emergence of tensile forces in the contact zone. Amonton-Coulomb Friction Law included allows to put into consideration relative resting of the crack opposite faces or their relative motion when one crack face is slipping or sliding across another face. The contact boundary restrictions are implemented using the iterative correction algorithm. The mathematical model adequacy is checked by comparing with classical model solution for statics problems that takes into account the crack faces contact. Numerical researches of friction influence on the displacement and contact forces distribution, size of contact zone are carried out. Influence of the faces contact and value of the friction coefficient on the distribution of stress intensity coefficients of normal rupture and transverse shear, which are the parameters of the biomaterial fracture, are presented and analyzed. It is shown that the nature of change in the distribution of the stress intensity coefficients for the conditions of tensile and shear waves is fundamentally different. It is concluded that it is possible to extend the approach proposed to the problems of three-dimensional fracture mechanics for composites with interfacial cracks at arbitrary dynamic loading.


1989 ◽  
Vol 56 (2) ◽  
pp. 284-290 ◽  
Author(s):  
Ch. Zhang ◽  
J. D. Achenbach

An elastodynamic conservation integral, the J˜k integral, is employed to derive boundary integral equations for crack configurations in a direct and natural way. These equations immediately have lower-order singularities than the ones obtained in the conventional manner by the use of the Betti-Rayleigh reciprocity relation. This is an important advantage for the development of numerical procedures for solving the BIE’s, and for an accurate calculation of the strains and stresses at internal points close to the crack faces. For curved cracks of arbitrary shape the BIE’s presented here have simple forms, and they do not require integration by parts, as in the conventional formulation. For the dynamic case the unknown quantities are the crack opening displacements and their derivatives (dislocation densities), while for the static case only the dislocation densities appear in the formulation. For plane cracks the boundary integral equations reduce to the ones obtained by other investigators.


Sign in / Sign up

Export Citation Format

Share Document