scholarly journals Using additive technologies to create broadband antennas with fractal geometry

2021 ◽  
Vol 13 (4) ◽  
pp. 427-434
Author(s):  
Andrey V. Smirnov ◽  
◽  
Alexander S. Fionov ◽  
Ilia A. Gorbachev ◽  
Elizaveta S. Shamsutdinova ◽  
...  

The paper presents the results of a study of the frequency dependence of the S11 parameters of antenna samples with fractal geometry, created using 3D printing technology, followed by the deposition of a conductive copper coating by galvanization. It is shown that changing the dimension of the fractal at different iterations, shifting and dividing the resonant frequencies, it is possible to flexibly form the working bands of antennas in any frequency range and any width. The developed designs can be used to create broadband rectennas.

Author(s):  
A.P. Voroshilin ◽  
◽  
V.N. Rozhkov ◽  
P.A. Ukhov ◽  
◽  
...  

The article identifies promising areas of application of additive technologies in the production of parts and elements of aviation equipment (AT), the main tasks that need to be solved when implementing them (during the implementation process). The features of the application of laser scanning for non-destructive quality control of aircraft parts manufactured using modern additive technologies are considered. The possibility of controlling deviations in the shape and size of parts of aircraft manufactured using 3D printing technology from their 3D models by stationary and portable scanners (for example, an adapter for the air conditioning and ventilation system of an aircraft) is shown.(is represented) The article presents the main operations of the technological process of laser scanning using modern technical and software tools, the process of laser scanning of the AT part using the FARO Arm mobile CMM is implemented.


Author(s):  
Mohd Nazri Ahmad ◽  
Ahmad Afiq Tarmeze ◽  
Amir Hamzah Abdul Rasib

2020 ◽  
Vol 14 (7) ◽  
pp. 470
Author(s):  
Jarosław Kotliński ◽  
Karol Osowski ◽  
Zbigniew Kęsy ◽  
Andrzej Kęsy

2021 ◽  
pp. 2102649
Author(s):  
Sourav Chaule ◽  
Jongha Hwang ◽  
Seong‐Ji Ha ◽  
Jihun Kang ◽  
Jong‐Chul Yoon ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1106
Author(s):  
Alejandro Cortés ◽  
Xoan F. Sánchez-Romate ◽  
Alberto Jiménez-Suárez ◽  
Mónica Campo ◽  
Ali Esmaeili ◽  
...  

Electromechanical sensing devices, based on resins doped with carbon nanotubes, were developed by digital light processing (DLP) 3D printing technology in order to increase design freedom and identify new future and innovative applications. The analysis of electromechanical properties was carried out on specific sensors manufactured by DLP 3D printing technology with complex geometries: a spring, a three-column device and a footstep-sensing platform based on the three-column device. All of them show a great sensitivity of the measured electrical resistance to the applied load and high cyclic reproducibility, demonstrating their versatility and applicability to be implemented in numerous items in our daily lives or in industrial devices. Different types of carbon nanotubes—single-walled, double-walled and multi-walled CNTs (SWCNTs, DWCNTs, MWCNTs)—were used to evaluate the effect of their morphology on electrical and electromechanical performance. SWCNT- and DWCNT-doped nanocomposites presented a higher Tg compared with MWCNT-doped nanocomposites due to a lower UV light shielding effect. This phenomenon also justifies the decrease of nanocomposite Tg with the increase of CNT content in every case. The electromechanical analysis reveals that SWCNT- and DWCNT-doped nanocomposites show a higher electromechanical performance than nanocomposites doped with MWCNTs, with a slight increment of strain sensitivity in tensile conditions, but also a significant strain sensitivity gain at bending conditions.


Sign in / Sign up

Export Citation Format

Share Document