scholarly journals Spin current and spin magnetoresistance of the heterostructure iridate/manganite interface

2021 ◽  
Vol 13 (4) ◽  
pp. 479-486
Author(s):  
Gennady A. Ovsyannikov ◽  
◽  
Karen Y. Constantinian ◽  
Vladislav A. Shmakov ◽  
Anton V. Shadrin ◽  
...  

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences The paper presents the results of fabrication and structural study of SrIrO3/La0.7Sr0.3MnO3 heterostructures. The results of experimental studies of the spin current arising in the regime of ferromagnetic resonance are presented. The spin-orbit interaction present in 5d-oxides of transition metals, which is SrIrO3, provides an effective conversion of spin current to charge current due to the inverse spin Hall effect. The angular dependence of spin magnetoresistance makes it possible to determine the angle of the spin Hall effect.

2016 ◽  
Vol 15 (8) ◽  
pp. 863-869 ◽  
Author(s):  
Dali Sun ◽  
Kipp J. van Schooten ◽  
Marzieh Kavand ◽  
Hans Malissa ◽  
Chuang Zhang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongjoon Lee ◽  
Dongwook Go ◽  
Hyeon-Jong Park ◽  
Wonmin Jeong ◽  
Hye-Won Ko ◽  
...  

AbstractThe orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment. Analysis of the magnetic torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal, which competes with the contribution from the spin Hall effect. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering.


AIP Advances ◽  
2012 ◽  
Vol 2 (3) ◽  
pp. 032147 ◽  
Author(s):  
M.-J. Xing ◽  
M. B. A. Jalil ◽  
Seng Ghee Tan ◽  
Y. Jiang

Sign in / Sign up

Export Citation Format

Share Document