scholarly journals Filamentous Fungi PKF121 Isolated from Dry Dipterocarp Forest Soil in Northeast Thailand Produces Antimicrobial Agents Active Aginst Methicillin-Resistant Staphylococcus aureus


2012 ◽  
Vol 45 (2) ◽  
pp. 189-193 ◽  
Author(s):  
Karinne Spirandelli Carvalho Naves ◽  
Natália Vaz da Trindade ◽  
Paulo Pinto Gontijo Filho

INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) is spread out in hospitals across different regions of the world and is regarded as the major agent of nosocomial infections, causing infections such as skin and soft tissue pneumonia and sepsis. The aim of this study was to identify risk factors for methicillin-resistance in Staphylococcus aureus bloodstream infection (BSI) and the predictive factors for death. METHODS: A retrospective cohort of fifty-one patients presenting bacteraemia due to S. aureus between September 2006 and September 2008 was analysed. Staphylococcu aureus samples were obtained from blood cultures performed by clinical hospital microbiology laboratory from the Uberlândia Federal University. Methicillinresistance was determined by growth on oxacillin screen agar and antimicrobial susceptibility by means of the disk diffusion method. RESULTS: We found similar numbers of MRSA (56.8%) and methicillin-susceptible Staphylococcus aureus (MSSA) (43.2%) infections, and the overall hospital mortality ratio was 47%, predominantly in MRSA group (70.8% vs. 29.2%) (p=0.05). Age (p=0.02) was significantly higher in MRSA patients as also was the use of central venous catheter (p=0.02). The use of two or more antimicrobial agents (p=0.03) and the length of hospital stay prior to bacteraemia superior to seven days (p=0.006) were associated with mortality. High odds ratio value was observed in cardiopathy as comorbidity. CONCLUSIONS: Despite several risk factors associated with MRSA and MSSA infection, the use of two or more antimicrobial agents was the unique independent variable associated with mortality.



2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hend M. Abdulghany ◽  
Rasha M. Khairy

The current study aimed to use Coagulase gene polymorphism to identify methicillin-resistant Staphylococcus aureus (MRSA) subtypes isolated from nasal carriers in Minia governorate, Egypt, evaluate the efficiency of these methods in discriminating variable strains, and compare these subtypes with antibiotypes. A total of 400 specimens were collected from nasal carriers in Minia governorate, Egypt, between March 2012 and April 2013. Fifty-eight strains (14.5%) were isolated and identified by standard microbiological methods as MRSA. The identified isolates were tested by Coagulase gene RFLP typing. Out of 58 MRSA isolates 15 coa types were classified, and the amplification products showed multiple bands (1, 2, 3, 4, 5, and 8 bands). Coagulase gene PCR-RFLPs exhibited 10 patterns that ranged from 1 to 8 fragments with AluI digestion. Antimicrobial susceptibility testing with a panel of 8 antimicrobial agents showed 6 different antibiotypes. Antibiotype 1 was the most common phenotype with 82.7%. The results have demonstrated that many new variants of the coa gene are present in Minia, Egypt, different from those reported in the previous studies. So surveillance of MRSA should be continued.



2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shumyila Nasir ◽  
Muhammad Sufyan Vohra ◽  
Danish Gul ◽  
Umm E Swaiba ◽  
Maira Aleem ◽  
...  

The emergence of multidrug-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), the chief etiological agent for a range of refractory infections, has rendered all β-lactams ineffective against it. The treatment process is further complicated with the development of resistance to glycopeptides, primary antibiotics for treatment of MRSA. Antibiotic combination therapy with existing antimicrobial agents may provide an immediate treatment option. Minimum inhibitory concentrations (MICs) of 18 different commercially available antibiotics were determined along with their 90 possible pairwise combinations and 64 triple combinations to filter out 5 best combinations. Time-Kill kinetics of these combinations were then analyzed to find collateral bactericidal combinations which were then tested on other randomly selected MRSA isolates. Among the top 5 combinations including levofloxacin-ceftazidime; amoxicillin/clavulanic acid-tobramycin; amoxicillin/clavulanic acid-cephradine; amoxicillin/clavulanic acid-ofloxacin; and piperacillin/tazobactam-tobramycin, three combinations were found to be collaterally effective. Levofloxacin-ceftazidime acted synergistically in 80% of the tested clinical MRSA isolates. First-line β-lactams of lower generations can be used effectively against MRSA infection when used in combination. Antibiotics other than glycopeptides may still work in combination.



Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 667 ◽  
Author(s):  
Marwa I. Abd El-Hamid ◽  
El-sayed Y. El-Naenaeey ◽  
Toka M kandeel ◽  
Wael A. H. Hegazy ◽  
Rasha A. Mosbah ◽  
...  

Multidrug resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) is a superbug pathogen that causes serious diseases. One of the main reasons for the lack of the effectiveness of antibiotic therapy against infections caused by this resistant pathogen is the recalcitrant nature of MRSA biofilms, which results in an increasingly serious situation worldwide. Consequently, the development of innovative biofilm inhibitors is urgently needed to control the biofilm formation by this pathogen. In this work, we thus sought to evaluate the biofilm inhibiting ability of some promising antibiofilm agents such as zinc oxide nanoparticles (Zno NPs), proteinase K, and hamamelitannin (HAM) in managing the MRSA biofilms. Different phenotypic and genotypic methods were used to identify the biofilm producing MDR MRSA isolates and the antibiofilm/antimicrobial activities of the used promising agents. Our study demonstrated strong antibiofilm activities of ZnO NPs, proteinase K, and HAM against MRSA biofilms along with their transcriptional modulation of biofilm (intercellular adhesion A, icaA) and quorum sensing (QS) (agr) genes. Interestingly, only ZnO NPs showed a powerful antimicrobial activity against this pathogen. Collectively, we observed overall positive correlations between the biofilm production and the antimicrobial resistance/agr genotypes II and IV. Meanwhile, there was no significant correlation between the toxin genes and the biofilm production. The ZnO NPs were recommended to be used alone as potent antimicrobial and antibiofilm agents against MDR MRSA and their biofilm-associated diseases. On the other hand, proteinase-K and HAM can be co-administrated with other antimicrobial agents to manage such types of infections.



Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 375
Author(s):  
Vanessa Silva ◽  
Sara Hermenegildo ◽  
Catarina Ferreira ◽  
Célia M. Manaia ◽  
Rosa Capita ◽  
...  

In this study we aimed to characterize antimicrobial resistance in methicillin-resistant Staphylococcus aureus (MRSA) isolated from bloodstream infections as well as the associated genetic lineages of the isolates. Sixteen MRSA isolates were recovered from bacteremia samples from inpatients between 2016 and 2019. The antimicrobial susceptibility of these isolates was tested by the Kirby–Bauer disk diffusion method against 14 antimicrobial agents. To determine the macrolide–lincosamide–streptogramin B (MLSB) resistance phenotype of the isolates, erythromycin-resistant isolates were assessed by double-disk diffusion (D-test). The resistance and virulence genes were screened by polymerase chain reaction (PCR). All isolates were characterized by multilocus sequence typing (MLST), spa typing, staphylococcal chromosomal cassette mec (SCCmec) typing, and accessory gene regulator (agr) typing. Isolates showed resistance to cefoxitin, penicillin, ciprofloxacin, erythromycin, fusidic acid, clindamycin, and aminoglycosides, confirmed by the presence of the blaZ, ermA, ermC, mphC, msrA/B, aac(6’)-Ie-aph(2’’)-Ia, and ant(4’)-Ia genes. Three isolates were Panton–Valentine-leukocidin-positive. Most strains (n = 12) presented an inducible MLSB phenotype. The isolates were ascribed to eight spa-types (t747, t002, t020, t1084, t008, t10682, t18526, and t1370) and four MLSTs (ST22, ST5, ST105, and ST8). Overall, most (n = 12) MRSA isolates had a multidrug-resistance profile with inducible MLSB phenotypes and belonged to epidemic MRSA clones.





Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 730
Author(s):  
Nicolás Gómez-Sequeda ◽  
Marlon Cáceres ◽  
Elena E. Stashenko ◽  
William Hidalgo ◽  
Claudia Ortiz

The emergence of multidrug resistant microorganisms represents a global challenge due to the lack of new effective antimicrobial agents. In this sense, essential oils (EOs) are an alternative to be considered because of their anti-inflammatory, antiviral, antibacterial, and antibiofilm biological activities. Therefore, multiple efforts have been made to consider the potential use of EOs in the treatment of infections which are caused by resistant microorganisms. In this study, 15 EOs of both Colombian and introduced aromatic plants were evaluated against pathogenic strains of E. coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA) in planktonic and sessile states in order to identify relevant and promising alternatives for the treatment of microbial infections. Forty different compounds were identified in the 15 EO with nine of them constituted mainly by oxygenated monoterpenes (OM). EOs from Lippia origanoides, chemotypes thymol, and carvacrol, displayed the highest antibacterial activity against E. coli O157:H7 (MIC50 = 0.9 and 0.3 mg/mL, respectively) and MRSA (MIC50 = 1.2 and 0.6 mg/mL, respectively). These compounds from EOs had also the highest antibiofilm activity (inhibition percentage > 70.3%). Using scanning electron microscopy (SEM), changes in the size and morphology of both bacteria were observed when they were exposed to sub-inhibitory concentrations of L. origanoides EO carvacrol chemotype. EOs from L. origanoides, thymol, and carvacrol chemotypes represented a viable alternative for the treatment of microbial infections; however, the Selectivity Index (SI ≤ 3) indicated that it was necessary to study alternatives to reduce its in vitro cytotoxicity.



Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 439 ◽  
Author(s):  
Vanessa Silva ◽  
Telma de Sousa ◽  
Paula Gómez ◽  
Carolina Sabença ◽  
Madalena Vieira-Pinto ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) are one of the main pathogens associated with purulent infections. MRSA clonal complex 97 (CC97) has been identified in a wide diversity of livestock animals. Therefore, we aimed to investigate the antibiotic resistance profiles of MRSA strains isolated from purulent lesions of food-producing rabbits. Samples from purulent lesions of 66 rabbits were collected in a slaughterhouse in Portugal. Samples were seeded onto ORSAB plates with 2 mg/L of oxacillin for MRSA isolation. Susceptibility to antibiotics was tested by the disk diffusion method against 14 antimicrobial agents. The presence of resistance genes, virulence factors and the immune evasion cluster (IEC) system was studied by polymerase chain reaction. All isolates were characterized by multilocus sequence typing (MLST), agr and spa typing. From the 66 samples analyzed, 16 (24.2%) MRSA were detected. All strains were classified as multidrug-resistant as they were resistant to at least three classes of antibiotics. All isolates showed resistance to penicillin, erythromycin and clindamycin. Seven isolates were resistant to gentamicin and harbored the aac(6′)-Ie-aph (2″)-Ia gene. Resistance to tetracycline was detected in 10 isolates harboring the tet(K) gene. The IEC genes were detected in three isolates. MRSA strains belonged to CC97, CC1, CC5, CC15 or CC22. The isolates were assigned to six different spa types. In this study we found a moderate prevalence of multidrug-resistant MRSA strains in food-producing rabbits. This may represent concern for food safety and public health, since cross-contamination may occur, leading to the spread of MRSA and, eventually, the possibility of ingestion of contaminated meat.



Sign in / Sign up

Export Citation Format

Share Document